Skip to main content

Advertisement

Log in

Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Various microRNAs from the miR-371-3 and miR-302a–d clusters have recently been proposed as markers for testicular germ cell tumours. Upregulation of these miRNAs has been found in both the tissue and serum of testicular cancer patients, but they have never been studied in human seminal plasma. The aim of this study was, therefore, to assess the differences in the expression of miR-371-3 and miR-302a–d between the seminal plasma and serum of testicular cancer patients, and to identify new potential testicular cancer markers in seminal plasma. We investigated the serum and seminal plasma of 28 pre-orchiectomy patients subsequently diagnosed with testicular cancer, the seminal plasma of another 20 patients 30 days post-orchiectomy and a control group consisting of 28 cancer-free subjects attending our centre for an andrological check-up. Serum microRNA expression was analysed using RT-qPCR. TaqMan Array Card 3.0 platform was used for microRNA profiling in the seminal plasma of cancer patients. Results for both miR-371-3 and the miR-302 cluster in the serum of testicular cancer patients were in line with literature reports, while miR-371and miR-372 expression in seminal plasma showed the opposite trend to serum. On array analysis, 37 miRNAs were differentially expressed in the seminal plasma of cancer patients, and the upregulated miR-142 and the downregulated miR-34b were validated using RT-qPCR. Our study investigated the expression of miRNAs in the seminal plasma of patients with testicular cancer for the first time. Unlike in serum, miR-371-3 cannot be considered as markers in seminal plasma, whereas miR-142 levels in seminal plasma may be a potential marker for testicular cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.W. Oosterhuis, L.H. Looijenga, Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer. 5, 210–22 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. C. Bosetti, P. Bertuccio, L. Chatenoud, E. Negri, C. La Vecchia, F. Levi, Trends in mortality from urologic cancers in Europe, 1970–2008. Eur. Urol. 60, 1–15 (2011)

    Article  PubMed  Google Scholar 

  3. F. Bray, L. Richiardi, A. Ekbom, D. Forman, E. Pukkala, M. Cuninkova, H. Møller, Do testicular seminoma and nonseminoma share the same etiology? Evidence from an age-period-cohort analysis of incidence trends in eight European countries. Cancer. Epidemiol. Biomark. Prev. 15, 652–658 (2006)

    Article  Google Scholar 

  4. J. Beyer, P. Albers, R. Altena, J. Aparicio, C. Bokemeyer, J. Busch, R. Cathomas, E. Cavallin-Stahl, N.W. Clarke, J. Claßen, G. Cohn-Cedermark, A.A. Dahl, G. Daugaard, U. De Giorgi, M. De Santis, M. De Wit, R. De Wit, K.P. Dieckmann, M. Fenner, K. Fizazi, A. Flechon, S.D. Fossa, J.R. Germá Lluch, J.A. Gietema, S. Gillessen, A. Giwercman, J.T. Hartmann, A. Heidenreich, M. Hentrich, F. Honecker, A. Horwich, R.A. Huddart, S. Kliesch, C. Kollmannsberger, S. Krege, M.P. Laguna, L.H.J. Looijenga, J.P. Lorch ALotz, F. Mayer, A. Necchi, N. Nicolai, J. Nuver, K. Oechsle, J. Oldenburg, J.W. Oosterhuis, T. Powles, E. Rajpert-De Meyts, O. Rick, G. Rosti, R. Salvioni, M. Schrader, S. Schweyer, F. Sedlmayer, A. Sohaib, R. Souchon, T. Tandstad, C. Winter, C. Wittekind, Maintaining success, reducing treatment burden, focusing on survivorship: highlights from the third European consensus conference on diagnosis and treatment of germ-cell cancer. Ann. Oncol. 24, 878–888 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. H.S. Haugnes, G.J. Bosl, H. Boer, J.A. Gietema, M. Brydøy, J. Oldenburg, A.A. Dahl, R.M. Bremnes, S.D. Fosså, Long-term and late effects of germ cell testicular cancer treatment and implications for follow-up. J. Clin. Oncol. 20, 3752–3763 (2012)

    Article  Google Scholar 

  6. A. Horwich, J. Shipley, R. Huddart, Testicular germ cell cancer. Lancet. 29, 1398 (2006)

    Google Scholar 

  7. L.J. Barlow, G.M. Badalato, J.M. McKiernan, Serum tumor markers in the evaluation of male germ cell tumors. Nat. Rev. Urol. 7, 610–617 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. V.N. Kim, J. Han, M.C. Siomi, Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell. Biol. 10, 126–139 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. E. Rajpert-De Meyts, J.E. Nielsen, N.E. Skakkebaek, K. Almstrup, Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs. Folia Histochem. Cytobiol. 53, 177–188 (2015)

    Article  PubMed  Google Scholar 

  10. M.A. Rijlaarsdam, T. van Agthoven, A.J. Gillis, S. Patel, K. Hayashibara, K.Y. Lee, L.H. Looijenga, Identification of known and novel germ cell cancer-specific (embryonic) miRs in serum by high-throughput profiling. Andrology 3, 85–91 (2015)

    Article  CAS  Google Scholar 

  11. K.P. Dieckmann, M. Spiekermann, T. Balks, I. Flor, T. Löning, J. Bullerdiek, G. Belge, MicroRNAs miR-371-3 in serum as diagnostic tools in the management of testicular germ cell tumours. Br. J. Cancer. 6, 1754–1760 (2012)

    Article  Google Scholar 

  12. A.J. Gillis, H.J. Stoop, R. Hersmus, J.W. Oosterhuis, Y. Sun, C. Chen, S. Guenther, J. Sherlock, I. Veltman, J. Baeten, P.J. van der Spek, P. de Alarcon, L.H. Looijenga, High-throughput microRNAome analysis in human germ cell tumours. J. Pathol. 213, 319–328 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. G. Belge, K.P. Dieckmann, M. Spiekermann, T. Balks, J. Bullerdiek, Serum levels of microRNAs miR-371-3: a novel class of serum biomarkers for testicular germ cell tumors? Eur. Urol. 61, 1068–1069 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. I. Syring, J. Bartels, S. Holdenrieder, G. Kristiansen, S.C. Müller, J. Ellinger, Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J. Urol. 193, 331–337 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. C. Wang, C. Yang, X. Chen, B. Yao, C. Yang, C. Zhu, L. Li, J. Wang, X. Li, Y. Shao, Y. Liu, J. Ji, J. Zhang, K. Zen, C.Y. Zhang, C. Zhang, Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin. Chem. 57, 1722–1731 (2011)

    Article  CAS  Google Scholar 

  16. W. Wu, Z. Hu, Y. Qin, J. Dong, J. Dai, C. Lu, W. Zhang, H. Shen, Y. Xia, X. Wang, Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol. Hum. Reprod. 18, 489–497 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. S.C. McIver, S.D. Roman, B. Nixon, E.A. McLaughlin, miRNA and mammalian male germ cells. Hum. Reprod. Update 18, 44–59 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. M. Abu-Halima, C. Backes, P. Leidinger, A. Keller, A.M. Lubbad, M. Hammadeh, E. Meese, MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil. Steril. 101, 78–86 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. L.A. Selth, M.J. Roberts, C.W. Chow, V.R. Marshall, S.A. Doi, A.D. Vincent, L.M. Butler, M.F. Lavin, W.D. Tilley, R.A. Gardiner, Human seminal fluid as a source of prostate cancer-specific microRNA biomarkers. Endocr. Relat. Cancer. 21, L17–21 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. L.O. Reis, T.C. Pereira, I. Lopes-Cendes, U. Ferreira, MicroRNAs: a new paradigm on molecular urological oncology. Urology. 76, 521–527 (2010)

    Article  PubMed  Google Scholar 

  21. J.A. Weber, D.H. Baxter, S. Zhang, D.Y. Huang, K.H. Huang, M.J. Lee, D.J. Galas, K. Wang, The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–8 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. J. Brennecke, D.R. Hipfner, A. Stark, R.B. Russell, S.M. Cohen, Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Y.S. Lee, H.K. Kim, S. Chung, K.S. Kim, A. Dutta, Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem. 280, 16635–16641 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. R. Yi, M.N. Poy, M. Stoffel, E. Fuchs, A skin microRNA promotes differentiation by repressing ’stemness’. Nature 452, 225–229 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C.Z. Chen, L. Li, H.F. Lodish, D.P. Bartel, MicroRNAs modulate hematopoietic lineage differentiation. Science 2, 83–86 (2004)

    Article  Google Scholar 

  27. V. Ambros, MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. P. Xu, S.Y. Vernooy, M. Guo, B.A. Hay, The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 29, 790–795 (2003)

    Article  Google Scholar 

  29. A. Esquela-Kerscher, F.J. Slack, Oncomirs. microRNAs with a role in cancer. Nat. Rev. Cancer. 6, 259–269 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. N. Kotaja, MicroRNAs and spermatogenesis. Fertil. Steril. 101, 1552–1562 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. M.V. Iorio, C.M. Croce, microRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. EMBO Mol. Med. 4, 143–59 (2012)

    Article  CAS  PubMed Central  Google Scholar 

  32. L. Wang, C. Xu, Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction 149, R127–137 (2015)

    Article  PubMed  Google Scholar 

  33. Y. He, J. Lin, D. Kong, M. Huang, C. Xu, T.K. Kim, A. Etheridge, Y. Luo, Y. Ding, K. Wang, Current state of circulating MicroRNAs as cancer biomarkers. Clin. Chem. 61, 1138–1155 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. S. Dimmeler, A.M. Zeiher, Circulating microRNAs: novel biomarkers for cardiovascular diseases? Eur. Heart J. 31, 2705–2707 (2010)

    Article  PubMed  Google Scholar 

  35. A. Zampetaki, S. Kiechl, I. Drozdov, P. Willeit, U. Mayr, M. Prokopi, A. Mayr, S. Weger, F. Oberhollenzer, E. Bonora, A. Shah, J. Willeit, M. Mayr, Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 17, 810–817 (2010)

    Article  Google Scholar 

  36. K. Wang, S. Zhang, B. Marzolf, P. Troisch, A. Brightman, Z. Hu, L.E. Hood, D.J. Galas, Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 17, 4402–4407 (2009)

    Article  Google Scholar 

  37. J. Li, X. Liang, Z. Chen, Improving the embryo implantation via novel molecular targets. Curr. Drug. Targets. 14, 864–871 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. P.M. Voorhoeve, C. le Sage, M. Schrier, A.J. Gillis, H. Stoop, R. Nagel, Y.P. Liu, J. van Duijse, J. Drost, A. Griekspoor, E. Zlotorynski, N. Yabuta, G. De Vita, H. Nojima, L.H. Looijenga, R. Agami, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 24, 1169–1181 (2006)

    Article  Google Scholar 

  39. R.D. Palmer, M.J. Murray, H.K. Saini, S. van Dongen, C. Abreu-Goodger, B. Muralidhar, M.R. Pett, C.M. Thornton, J.C. Nicholson, A.J. Enright, N. Coleman, Children’s cancer and leukaemia group malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res. 1, 2911–2923 (2010)

    Article  Google Scholar 

  40. M.J. Murray, D.J. Halsall, C.E. Hook, D.M. Williams, J.C. Nicholson, N. Coleman, Identification of microRNAs from the miR-371~373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am. J. Clin. Pathol. 135, 119–125 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. A.J. Gillis, M.A. Rijlaarsdam, R. Eini, L.C. Dorssers, K. Biermann, M.J. Murray, J.C. Nicholson, N. Coleman, K.P. Dieckmann, G. Belge, J. Bullerdiek, T. Xu, N. Bernard, L.H. Looijenga, Targeted serum miRNA (TSmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol. Oncol. 7, 1083–1092 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Spiekermann, G. Belge, N. Winter, R. Ikogho, T. Balks, J. Bullerdiek, K.P. Dieckmann, MicroRNA miR-371a-3p in serum of patients with germ cell tumours: evaluations for establishing a serum biomarker. Andrology 3, 78–84 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. Y. Chu, Y. Ouyang, F. Wang, A. Zheng, L. Bai, L. Han, Y. Chen, H. Wang, MicroRNA-590 promotes cervical cancer cell growth and invasion by targeting CHL1. J. Cell. Biochem. 115, 847–853 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. F. Lian, Y. Cui, C. Zhou, K. Gao, L. Wu, Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. PLoS One. 16, e0121499 (2015)

    Article  Google Scholar 

  45. J.L. Park, M. Kim, K.S. Song, S.Y. Kim, Y.S. Kim, Cell-Free miR-27a, a potential diagnostic and prognostic biomarker for gastric cancer. Genom. Inform 13, 70–75 (2015)

    Article  Google Scholar 

  46. M. Bellon, Y. Lepelletier, O. Hermine, C. Nicot, Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood. 14, 4914–4917 (2009)

    Article  Google Scholar 

  47. A.B. Hu, M. Lenarduzzi, T. Krushel, L. Waldron, M. Pintilie, W. Shi, B. Perez-Ordonez, I. Jurisica, B. O’Sullivan, J. Waldron, P. Gullane, B. Cummings, F.F. Liu, Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin. Cancer Res. 15, 1129–1139 (2010)

    Article  Google Scholar 

  48. R.J. Lin, D.W. Xiao, L.D. Liao, T. Chen, Z.F. Xie, W.Z. Huang, W.S. Wang, T.F. Jiang, B.L. Wu, E.M. Li, L.Y. Xu, MiR-142-3p as a potential prognostic biomarker for esophageal squamous cell carcinoma. J. Surg. Oncol. 105, 175–182 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. S. Kaduthanam, S. Gade, M. Meister, J.C. Brase, M. Johannes, H. Dienemann, A. Warth, P.A. Schnabel, F.J. Herth, H. Sültmann, T. Muley, R. Kuner, Serum miR-142-3p is associated with early relapse in operable lung adenocarcinoma patients. Lung Cancer. 80, 223–227 (2013)

    Article  PubMed  Google Scholar 

  50. L. Wu, C. Cai, X. Wang, M. Liu, X. Li, H. Tang, MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett. 6, 1322–1330 (2011)

    Article  Google Scholar 

  51. T. Isobe, S. Hisamori, D.J. Hogan, M. Zabala, D.G. Hendrickson, P. Dalerba, S. Cai, F. Scheeren, A.H. Kuo, S.S. Sikandar, J.S. Lam, D. Qian, F.M. Dirbas, G. Somlo, K. Lao, P.O. Brown, M.F. Clarke, Y. Shimono, miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. eLife 3, e01977 (2014)

    Article  PubMed Central  Google Scholar 

  52. H. Liu, Y. Yang, L. Zhang, R. Liang, R.S. Ge, Y. Zhang, Q. Zhang, Q. Xiang, Y. Huang, Z. Su, Basic fibroblast growth factor promotes stem Leydig cell development and inhibits LH-stimulated androgen production by regulating microRNA expression. J. Steroid Biochem. Mol. Biol. 144, 483–491 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. B. Huang, J. Zhao, Z. Lei, S. Shen, D. Li, G.X. Shen, G.M. Zhang, Z.H. Feng, miR-142-3p restricts cAMP production in CD4+ CD25- T cells and CD4+ CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep. 10, 180–185 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. D.M. Stocco, X. Wang, Y. Jo, P.R. Manna, Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol. 19, 2647–2659 (2005)

    Article  CAS  PubMed  Google Scholar 

  55. K. Tanaka, K. Kondo, K. Kitajima, M. Muraoka, A. Nozawa, T. Hara, Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. J. Biol. Chem. 16, 23990–23999 (2013)

    Article  Google Scholar 

  56. H. Hermeking, The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193–199 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. S. Majid, A.A. Dar, S. Saini, V. Shahryari, S. Arora, M.S. Zaman, I. Chang, S. Yamamura, Y. Tanaka, T. Chiyomaru, G. Deng, R. Dahiya, miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin. Cancer Res. 1, 73–84 (2013)

    Article  Google Scholar 

  58. M. Rokavek, H. Li, L. Jiang, H. Hermeking, The p53/miR-34 axis in development and disease. J. Mol. Cell Biol. 6, 214–230 (2014)

    Article  Google Scholar 

  59. L. Smorag, Y. Zheng, J. Nolte, U. Zechner, W. Engel, D.V. Pantakani, MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biol. Cell. 104, 677–692 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Marie-Hélène Hayles for her assistance in the English translation of the manuscript.

Funding

This work was supported by a grant from the Italian Ministry of Education and Research (MIUR-PRIN) and the University of Rome “La Sapienza” Faculty of Medicine.

Author contributions

L.G., D.P.: Conception and design of the work. M.P., G.C.: Carried out the molecular genetic studies. L.G., D.P.: Drafting the article. L.G.: Final approval of the version to be published. M.P., F.P., G.C.: Acquisition and analysis of data. F.L., A.L., F.P.: Revising the paper critically. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Paoli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelloni, M., Coltrinari, G., Paoli, D. et al. Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients. Endocrine 57, 518–527 (2017). https://doi.org/10.1007/s12020-016-1150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1150-z

Keywords

Navigation