Skip to main content
Log in

A combined form of hypothyroidism in pubertal patients with non-mosaic Klinefelter syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Klinefelter syndrome has been associated with thyroid abnormalities, the genesis of which is not yet fully clear. The aim of this study was to evaluate thyroid function in Klinefelter syndrome subjects during the pubertal period. Chemiluminescent microparticle immunoassay was used to analyze Thyroid-Stimulating Hormone, fT3 and fT4 concentration in serum samples from 40 Klinefelter syndrome pubertal boys with classic 47,XXY karyotype and 157 healthy age-matched controls. 13 Klinefelter syndrome patients also underwent Thyrotropin-Releasing Hormone testing to evaluate hypothalamic-pituitary function. fT3 levels were significantly lower in Klinefelter syndrome patients than in age-matched controls (p < 0.001). No significant differences were found for Thyroid-Stimulating Hormone (p = 0.138) or fT4 (p = 0.274), but the serum levels of Klinefelter syndrome patients tended to cluster around the lower part of the reference range for the assay. Three of the thirteen Klinefelter syndrome patients undergoing the Thyrotropin-Releasing Hormone test had an adequate response, one had a prolonged response at 60 min and nine responded inadequately. This study demonstrated for the first time that pubertal Klinefelter syndrome patients have significantly lower fT3 serum levels than do healthy age-matched boys, whereas Thyroid-Stimulating Hormone and fT4 are normal, albeit at the lower end of the reference range. Most patients showed an inadequate/prolonged response to pituitary stimulation with Thyrotropin-Releasing Hormone. These findings suggest a combined form of both central and peripheral hypothyroidism in Klinefelter syndrome boys during pubertal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.M. Yen, Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81(3), 1097–1142 (2001)

    CAS  PubMed  Google Scholar 

  2. M.S. Wagner, S. Magagnin Wajner, A.L. Maia, The role of thyroid hormone in testicular development and function. J. Endocrinol. 199, 351–365 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D.R. Holsberger, P.S. Cooke, Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue. Res. 322, 133–140 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. S.M. Mendis-Handagama, H.B. Siril Ariyaratne, Leydig cells, thyroid hormones and steroidogenesis. Indian J. Exp. Biol. 43, 939–962 (2005)

    CAS  PubMed  Google Scholar 

  5. A. Oetting, P.M. Yen, New insights into thyroid hormone action. Best Pract. Res. Clin. Endocrinol. Metabol. 21(2), 193–208 (2007)

    Article  CAS  Google Scholar 

  6. P. Michaud, A. Foradori, J.A. Rodriguez-Portales, E. Arteaga, J.M. Lopez, R. Tellez, A prepubertal surge of thyrotropin precedes an increase in thyroxine and 3,5,3′-triiodothyronine in normal children. J. Clin. Endocrinol. Metab. 72(5), 976–981 (1991)

    Article  CAS  PubMed  Google Scholar 

  7. A. Parra, S. Villalpando, E. Junco, B. Urquieta, S. Alatorre, G. Garcia-Bulnes, Thyroid gland function during childhood and adolescents. Changes in serum TSH, T4, T3, thyroxin-binding globulin, reverse T3 and free T4 and T3 concentrations. Acta Endocrinol. (Copenh). 93, 306–314 (1980)

    CAS  PubMed  Google Scholar 

  8. A.F. Radicioni, N. Tahani, M. Spaziani, A. Anzuini, C. Piccheri, A. Semeraro, L. Tarani, A. Lenzi, Reference ranges for thyroid hormones in normal Italian children and adolescents and overweight adolescents. J. Endocrinol. Invest. 36(5), 326–330 (2013)

    CAS  PubMed  Google Scholar 

  9. A. Bojesen, S. Juul, N.H. Birkebæk, C.H. Gravholt, Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J. Clin. Endocrinol. Metab. 88, 622–626 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. H.F. Klinefelter, E.C. Reifenstein, F. Albright, Syndrome characterized by gynecomastia, aspermatogenesis without A-Leydigism, and increased excretion of follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 2, 615–627 (1942)

    Article  CAS  Google Scholar 

  11. W.A. Hsueh, T.H. Hsu, D.D. Federman, Endocrine feature of Klinefelter’s syndrome. Medicine. (Baltimore). 57(5), 447–461 (1978)

    Article  CAS  PubMed  Google Scholar 

  12. A. Bojesen, C. Host, C.H. Gravholt, Klinefelter’s syndrome, type 2 diabetes and the metabolic syndrome: the impact of body composition. Mol. Hum. Reprod. 16(6), 396–401 (2010)

    Article  PubMed  Google Scholar 

  13. A. Ferlin, M. Schipilliti, A. Di Mambro, C. Vinanzi, C. Foresta, Osteoporosis in Klinefelter’s syndrome. Mol. Hum. Reprod. 16(6), 402–410 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. L. Aksglaede, C. Molgaard, N.E. Skakkebaek, A. Juul, Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter Syndrome. Arch. Dis. Child. 93, 30–34 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. A.M. Bjørn, A. Bojesen, C.H. Gravholt, P. Laurberg, Hypothyroidism secondary to hypothalamic-pituitary dysfunction may be part of the phenotype in Klinefelter Syndrome: a case-control study. J. Clin. Endocrinol. Metab. 94(7), 2478–2481 (2009)

    Article  PubMed  Google Scholar 

  16. V. Marras, M.R. Casini, S. Pilia, D. Carta, P. Civolani, M. Porcu, A.P. Uccheddu, S. Loche, Thyroid function in obese children and adolescents. Horm. Res. Paediatr. 73, 193–197 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. J.M. Tanner. Growth at adolescent. 2nd ed. Blackwell Scientific Publications, Oxford, 313 (1962)

    Google Scholar 

  18. G. Cacciari, S. Milani, A. Balsamo, E. Spada, G. Bona, L. Cavallo, F. Cerutti, L. Gargantini, N. Greggio, G. Tonini, A. Cicognani, Italian cross-sectional growth charts for height, weight and BMI (2 to 20 year). J. Endocrinol. Invest. 29, 581–593 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. B.J. Ormston, R.J. Cryer, R. Garry, G.M. Besser, R. Hall, Thyrotrophin-releasing hormone as a thyroid function test. Lancet 298(7714), 10–14 (1971)

    Article  Google Scholar 

  20. G. Faglia, The clinical impact of the thyrotropin-releasing hormone test. Thyroid. 8(10), 903–908 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. I. Cheikh, B.P. Hamilton, T.H. Hsu, J.G. Wiswell: Response of TSH and prolactin to TRH in Klinefelter's syndrome. Endocrinology 96 (Suppl A206), 153 (1975)

Download references

Acknowledgments

The authors would like to thank Marie-Hélène Hayles for the language revision.

Funding

This study was funded by the Italian Ministry of Health and the Italian Medicines Agency (AIFA): research project MRAR08Q009 on rare diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascia Tahani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahani, N., Ruga, G., Granato, S. et al. A combined form of hypothyroidism in pubertal patients with non-mosaic Klinefelter syndrome. Endocrine 55, 513–518 (2017). https://doi.org/10.1007/s12020-016-1130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1130-3

Keywords

Navigation