Skip to main content
Log in

Fetuin-A, adiposity-linked insulin resistance and responsiveness to an educational-based weight excess reduction program: a population-based survey in prepubertal schoolchildren

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The secreted hepatokine fetuin-A emerges as an independent predictor of type 2 diabetes in adulthood. The overall aims of this study were: (1) to investigate the associations of fetuin-A with adiposity and insulin resistance, as well as its relationship with adipokines, in prepubertal children, and, (2) to evaluate whether, in prepubertal obesity, serum fetuin-A levels may either change or predict the responsiveness to an educational-based weight excess reduction program. We studied 200 prepubertal children (boys/girls: 89/111; Tanner stage 1; age: 5–13 years), included in a cohort of 44,231 adolescents who participated in an extensive Italian school-based survey. According to Cole’s criteria, 100 individuals were lean (boys/girls: 57/43) and 100 obese (boys/girls: 54/46). A subset of 53 obese individuals (boys/girls: 28/25; age: 6–12 years) were also evaluated after a weight excess reduction program. Serum fetuin-A, leptin, total and high molecular weight adiponectin levels, as well as homeostasis model assessment of insulin resistance were assessed. When compared with lean, obese children exhibited higher ( p < 0.0001) fetuin-A concentrations, without differences between sex. Fetuin-A was positively associated with adiposity, homeostasis model assessment of insulin resistance, and leptin levels. In multivariate analysis, the associations between fetuin-A and leptin or homeostasis model assessment of insulin resistance lost the significance after adjustment for BMI Z-score, which, in turn, represented an independent determinant of fetuin-A (R 2 adj 0.327; p < 0.0001). Notably, after weight excess reduction program, fetuin-A levels dropped ( p < 0.0001 vs. basal). Interestingly, no significant differences of fetuin-A concentrations between responders and no responders were found. In prepubertal children, fetuin-A represents an early marker of adiposity, and its reduction after lifestyle intervention may partly contribute to the beneficial effects of weight excess reduction program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.L. Baker, L.W. Olsen, T.I. Sorensen, Childhood body-mass index and the risk of coronary heart disease in adulthood. N. Engl. J. Med. 357, 2329–2337 (2007)

    Article  CAS  Google Scholar 

  2. J.C. Winer, T.L. Zern, S.E. Taksali, J. Dziura, A.M. Cali, M. Wollschlager, A.A. Seyal, R. Weiss, T.S. Burgert, S. Caprio, Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J. Clin. Endocrinol. Metab. 91(11), 4415–4423 (2006)

    Article  CAS  Google Scholar 

  3. A. Sbarbati, F. Osculati, D. Silvagni, D. Benati, M. Galie, F.S. Camoglio, G. Rigotti, C. Maffeis, Obesity and inflammation: evidence for an elementary lesion. Pediatrics 117(1), 220–223 (2006)

    Article  Google Scholar 

  4. M. Sabin, J. Holly, J. Shield, S. Turner, M. Grohmann, C. Stewart, E. Crowne, Mature subcutaneous and visceral adipocyte concentrations of adiponectin are highly correlated in prepubertal children and inversely related to body mass index standard deviation score. J. Clin. Endocrinol. Metab. 91, 332–335 (2006)

    Article  CAS  Google Scholar 

  5. M. Valle, R. Martos, F. Gascon, R. Canete, M.A. Zafra, R. Morales, Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diabetes Metab. 31(1), 55–62 (2005)

    Article  CAS  Google Scholar 

  6. S.H. Ley, S.B. Harris, P.W. Connelly, M. Mamakeesick, J. Gittelsohn, R.A. Hegele, R. Retnakaran, B. Zinman, A.J. Hanley, Adipokines and incident type 2 diabetes in an Aboriginal Canadian population: the Sandy Lake Health and Diabetes Project. Diabetes Care 31(7), 1410–1415 (2008)

    Article  CAS  Google Scholar 

  7. Y. Wang, K.S. Lam, M.H. Yau, A. Xu, Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J. 409(3), 623–633 (2008)

    Article  CAS  Google Scholar 

  8. N. Stefan, H. HU, The metabolically benign and malignant fatty liver. Diabetes 60, 2011–2017 (2011)

    Article  CAS  Google Scholar 

  9. N. Stefan, H.U. Haring, The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9(3), 144–152 (2013)

    Article  CAS  Google Scholar 

  10. C. Weikert, N. Stefan, M.B. Schulze, T. Pischon, K. Berger, H.G. Joost, H.U. Haring, H. Boeing, A. Fritsche, Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation 118(24), 2555–2562 (2008)

    Article  CAS  Google Scholar 

  11. A. Iroz, J.-P. Couty, C. Postic, Hepatokines: unlocking the multi-organ network in metabolic diseases. Diabetologia 58, 1699–1703 (2015)

    Article  CAS  Google Scholar 

  12. L. Kalabay, K. Chavin, J. Lebreton, K. Robinson, M. Buse, P. Arnaud, Human recombinant alpha 2-HS glycoprotein is produced in insect cells as a full length inhibitor of the insulin receptor tyrosine kinase. Horm. Metab. Res. 30, 1–6 (1998)

    Article  CAS  Google Scholar 

  13. T. Reinehr, C.L. Roth, Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J. Clin. Endocrinol. Metab. 93(11), 4479–4485 (2008)

    Article  CAS  Google Scholar 

  14. N. Stefan, Q. Sun, A. Fritsche, J. Machann, F. Schick, F. Gerst, C. Jeppesen, H.G. Joost, F.B. Hu, H. Boeing, S. Ullrich, H.U. Haring, M.B. Schulze, Impact of the adipokine adiponectin and the hepatokine fetuin-A on the development of type 2 diabetes: prospective cohort- and cross-sectional phenotyping studies. PLoS One 9(3), e92238 (2014)

    Article  Google Scholar 

  15. A.M. Hennige, H. Staiger, C. Wicke, F. Machicao, A. Fritsche, H.U. Haring, N. Stefan, Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One 3(3), e1765 (2008)

    Article  Google Scholar 

  16. J.H. Ix, C.L. Wassel, A.M. Kanaya, E. Vittinghoff, K.C. Johnson, A. Koster, J.A. Cauley, T.B. Harris, S.R. Cummings, M.G. Shlipak, Fetuin-A and incident diabetes mellitus in older persons. J. Am. Med. Assoc. 300(2), 182–188 (2008)

    Article  CAS  Google Scholar 

  17. T. Reinehr, B. Karges, T. Meissner, S. Wiegand, M. Fritsch, H. RWeinhard, J. Woelfle, Fibroblast growth factor 21 and fetuin-A in obese adolescents with and without type 2 diabetes. J. Clin. Endocrinol. Metab. 100, 3004–3010 (2015)

    Article  CAS  Google Scholar 

  18. T. Reinehr, B. Stoffel-Wagner, C.L. Roth, Adipocyte fatty acid-binding protein in obese children before and after weight loss. Metabolism 56(12), 1735–1741 (2007)

    Article  CAS  Google Scholar 

  19. J.M. Brix, H. Stingl, F. Hollerl, G.H. Schernthaner, H.P. Kopp, G. Schernthaner, Elevated fetuin-A concentrations in morbid obesity decrease after dramatic weight loss. J. Clin. Endocrinol. Metab. 95(11), 4877–4881 (2010)

    Article  CAS  Google Scholar 

  20. T. Reinehr, J. Kratzsch, W. Kiess, W. Andler, Circulating soluble leptin receptor, leptin, and insulin resistance before and after weight loss in obese children. Int. J. Obes. (Lond.) 29(10), 1230–1235 (2005)

    Article  CAS  Google Scholar 

  21. G. Di Stefano, V. Bini, F. Papi, F. Celi, G. Contessa, M.G. Berioli, M.L. Bacosi, A. Falorni, Leptin serum concentrations predict the responsiveness of obese children and adolescents to weight excess reduction program. Int. J. Obes. Relat. Metab. Disord. 24(12), 1586–1591 (2000)

    Article  Google Scholar 

  22. G. Murdolo, B. Nowotny, F. Celi, M. Donati, V. Bini, F. Papi, G. Gornitzka, S. Castellani, M. Roden, A. Falorni, C. Herder, A. Falorni, Inflammatory adipokines, high molecular weight adiponectin, and insulin resistance: a population-based survey in prepubertal schoolchildren. PLoS One 6(2), e17264 (2011)

    Article  CAS  Google Scholar 

  23. F. Celi, V. Bini, G. De Giorgi, D. Molinari, F. Faraoni, G. Di Stefano, M.L. Bacosi, M.G. Berioli, G. Contessa, A. Falorni, Epidemiology of overweight and obesity among school children and adolescents in three provinces of central Italy, 1993–2001: study of potential influencing variables. Eur. J. Clin. Nutr. 57, 1045–1051 (2003)

    Article  CAS  Google Scholar 

  24. A. Falorni, G. Galmacci, V. Bini, F. Papi, D. Molinari, G. De Giorgi, F. Faraoni, F. Celi, G. Di Stefano, M.G. Berioli, G. Contessa, M.L. Bacosi, Fasting serum leptin levels in the analysis of body mass index cut-off values: are they useful for overweight screening in children and adolescents? A school population-based survey in three provinces of central Italy. Int. J. Obes. Relat. Metab. Disord. 22(12), 1197–1208 (1998)

    Article  CAS  Google Scholar 

  25. A. Falorni, V. Bini, D. Molinari, F. Papi, F. Celi, G. Di Stefano, M.G. Berioli, M.L. Bacosi, G. Contessa, Leptin serum levels in normal weight and obese children and adolescents: relationship with age, sex, pubertal development, body mass index and insulin. Int. J. Obes. Relat. Metab. Disord. 21(10), 881–890 (1997)

    Article  CAS  Google Scholar 

  26. T.J. Cole, M.C. Bellizzi, K.M. Flegal, W.H. Dietz, Establishing a standard definition for child overweight and obesity worldwide: international survey. Br. Med. J. 320(7244), 1240–1243 (2000)

    Article  CAS  Google Scholar 

  27. F. Abbasi, J. Chu, C. Lamendola, T. McLaughlin, J. Hayden, G. Reaven, P. Reaven, Discrimination between obesity and insulin-resistance in the relationship with adiponectin. Diabetes 53, 585–590 (2004)

    Article  CAS  Google Scholar 

  28. S. Araki, K. Dobashi, K. Kubo, K. Asayama, A. Shirahata, High molecular weight, rather than total, adiponectin levels better reflect metabolic abnormalities associated with childhood obesity. J. Clin. Endocrinol. Metab. 91(12), 5113–5116 (2006)

    Article  CAS  Google Scholar 

  29. H. Mangge, G. Almer, S. Haj-Yahya, S. Pilz, R. Gasser, R. Moller, R. Horejsi, Preatherosclerosis and adiponectin subfractions in obese adolescents. Obesity (Silver Spring) 16(12), 2578–2584 (2008)

    Article  CAS  Google Scholar 

  30. P.L. Tsou, Y.D. Jiang, C.C. Chang, J.N. Wei, F.C. Sung, C.C. Lin, C.C. Chiang, T.Y. Tai, L.M. Chuang, Sex-related differences between adiponectin and insulin resistance in schoolchildren. Diabetes Care 27(2), 308–313 (2004)

    Article  CAS  Google Scholar 

  31. K.K. Andersen, J. Frystyk, O.D. Wolthers, C. Heuck, A. Flyvbjerg, Gender differences of oligomers and total adiponectin during puberty: a cross-sectional study of 859 Danish school children. J. Clin. Endocrinol. Metab. 92(5), 1857–1862 (2007)

    Article  CAS  Google Scholar 

  32. A. Bottner, J. Kratzsch, G. Muller, T.M. Kapellen, S. Bluher, E. Keller, M. Bluher, W. Kiess, Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab. 89(8), 4053–4061 (2004)

    Article  Google Scholar 

  33. A.M. Wallace, A.D. McMahon, C.J. Packard, A. Kelly, J. Shepherd, A. Gaw, N. Sattar, Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation 104(25), 3052–3056 (2001)

    Article  CAS  Google Scholar 

  34. N. Satoh, M. Naruse, T. Usui, T. Tagami, T. Suganami, K. Yamada, H. Kuzuya, A. Shimatsu, Y. Ogawa, Leptin-to-adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients. Diabetes Care 27(10), 2488–2490 (2004)

    Article  CAS  Google Scholar 

  35. N. Stefan, A.M. Hennige, H. Staiger, J. Machann, F. Schick, S.M. Krober, F. Machicao, A. Fritsche, H.U. Haring, Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 29(4), 853–857 (2006)

    Article  CAS  Google Scholar 

  36. I. Dahlman, P. Eriksson, M. Kaaman, H. Jiao, C.M. Lindgren, J. Kere, P. Arner, Alpha2-Heremans-Schmid glycoprotein gene polymorphisms are associated with adipocyte insulin action. Diabetologia 47(11), 1974–1979 (2004)

    Article  CAS  Google Scholar 

  37. A. Siddiq, F. Lepretre, S. Hercberg, P. Froguel, F. Gibson, A synonymous coding polymorphism in the alpha2-Heremans-Schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes 54(8), 2477–2481 (2005)

    Article  CAS  Google Scholar 

  38. L. Groop, C. Forsblom, M. Lehtovirta, T. Tuomi, S. Karanko, M. Nissen, B.O. Ehrnstrom, B. Forsen, B. Isomaa, B. Snickars, M.R. Taskinen, Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes 45(11), 1585–1593 (1996)

    Article  CAS  Google Scholar 

  39. J. Hwang, B. Thakkar, J. Chamberland, C. Mantzoros, Circulating fetuin-A levels are not affected by short and long-term energy deprivation and/or by leptin administration. Metabolism 63, 754–759 (2014)

    Article  CAS  Google Scholar 

  40. B. Gustafson, A. Hammarstedt, C. Andersson, U. Smith, Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2276–2283 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Murdolo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murdolo, G., Tortoioli, C., Celi, F. et al. Fetuin-A, adiposity-linked insulin resistance and responsiveness to an educational-based weight excess reduction program: a population-based survey in prepubertal schoolchildren. Endocrine 56, 357–365 (2017). https://doi.org/10.1007/s12020-016-1009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1009-3

Keywords

Navigation