Advertisement

Endocrine

, Volume 55, Issue 1, pp 101–112 | Cite as

Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats

  • Rosiane Aparecida MirandaEmail author
  • Claudinéia Conationi da Silva Franco
  • Júlio Cezar de Oliveira
  • Luiz Felipe Barella
  • Laize Peron Tófolo
  • Tatiane Aparecida Ribeiro
  • Audrei Pavanello
  • Ellen Paula Santos da Conceição
  • Rosana Torrezan
  • James Armitage
  • Patrícia Cristina Lisboa
  • Egberto Gaspar de Moura
  • Paulo Cezar de Freitas Mathias
  • Elaine Vieira
Original Article

Abstract

Maternal obesity programmes a range of metabolic disturbances for the offspring later in life. Moreover, environmental changes during the suckling period can influence offspring development. Because both periods significantly affect long-term metabolism, we aimed to study whether cross-fostering during the lactation period was sufficient to rescue a programmed obese phenotype in offspring induced by maternal obesity following monosodium l-glutamate (MSG) treatment. Obesity was induced in female Wistar rats by administering subcutaneous MSG (4 mg/g body weight) for the first 5 days of postnatal life. Control and obese female rats were mated in adulthood. The resultant pups were divided into control second generation (F2) (CTLF2), MSG-treated second generation (F2) (MSGF2), which suckled from their CTL and MSG biological dams, respectively, or CTLF2-CR, control offspring suckled by MSG dams and MSGF2-CR, MSG offspring suckled by CTL dams. At 120 days of age, fat tissue accumulation, lipid profile, hypothalamic leptin signalling, glucose tolerance, glucose-induced, and adrenergic inhibition of insulin secretion in isolated pancreatic islets were analysed. Maternal MSG-induced obesity led to an obese phenotype in male offspring, characterized by hyperinsulinaemia, hyperglycaemia, hyperleptinaemia, dyslipidaemia, and impaired leptin signalling, suggesting central leptin resistance, glucose intolerance, impaired glucose-stimulated, and adrenergic inhibition of insulin secretion. Cross-fostering normalized body weight, food intake, leptin signalling, lipid profiles, and insulinaemia, but not glucose homeostasis or insulin secretion from isolated pancreatic islets. Our findings suggest that alterations during the lactation period can mitigate the development of obesity and prevent the programming of adult diseases.

Keywords

Cross-fostering Monosodium glutamate Obesity 

Notes

Acknowledgments

This work was supported by the Brazilian Federal Foundation, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    M. Li, D.M. Sloboda, M.H. Vickers, Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp. Diabetes Res. 2011, 592408 (2011). doi: 10.1155/2011/592408 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    D.J. Barker, The origins of the developmental origins theory. J. Intern. Med. 261(5), 412–417 (2007). doi: 10.1111/j.1365-2796.2007.01809.x CrossRefPubMedGoogle Scholar
  3. 3.
    E.A. Markakis, Development of the neuroendocrine hypothalamus. Front. Neuroendocr. 23(3), 257–291 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Plagemann, K. Roepke, T. Harder, M. Brunn, A. Harder, M. Wittrock-Staar, T. Ziska, K. Schellong, E. Rodekamp, K. Melchior, J.W. Dudenhausen, Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J. Perinat. Med. 38(4), 393–400 (2010). doi: 10.1515/JPM.2010.051 CrossRefPubMedGoogle Scholar
  5. 5.
    E. Isganaitis, M. Woo, H. Ma, M. Chen, W. Kong, A. Lytras, V. Sales, J. Decoste-Lopez, K.J. Lee, C. Leatherwood, D. Lee, C. Fitzpatrick, W. Gall, S. Watkins, M.E. Patti, Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes 63(2), 688–700 (2014). doi: 10.2337/db13-0558 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    F. Lifshitz, Obesity in children. J. Clin. Res. Pediatri. Endocrinol. 1(2), 53–60 (2008). doi: 10.4008/jcrpe.v1i2.35 CrossRefGoogle Scholar
  7. 7.
    R.J. Qasem, E. Yablonski, J. Li, H.M. Tang, L. Pontiggia, A.P. D’Mello, Elucidation of thrifty features in adult rats exposed to protein restriction during gestation and lactation. Physiol Behav 105(5), 1182–1193 (2012). doi: 10.1016/j.physbeh.2011.12.010 CrossRefPubMedGoogle Scholar
  8. 8.
    S.G. Bouret, S.J. Draper, R.B. Simerly, Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304(5667), 108–110 (2004). doi: 10.1126/science.1095004 CrossRefPubMedGoogle Scholar
  9. 9.
    C. de OliveiraCravo, C.V. Teixeira, M.C. Passos, S.C. Dutra, E.G. de Moura, C. Ramos, Leptin treatment during the neonatal period is associated with higher food intake and adult body weight in rats. Horm. Metab. Res. 34(7), 400–405 (2002). doi: 10.1055/s-2002-33473 CrossRefGoogle Scholar
  10. 10.
    F.P. Toste, E.G. de Moura, P.C. Lisboa, A.T. Fagundes, E. de Oliveira, M.C. Passos, Neonatal leptin treatment programmes leptin hypothalamic resistance and intermediary metabolic parameters in adult rats. Br. J. Nutr. 95(4), 830–837 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    X. Casabiell, V. Pineiro, M.A. Tome, R. Peino, C. Dieguez, F.F. Casanueva, Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J. Clin. Endocrinal. Metab. 82(12), 4270–4273 (1997). doi: 10.1210/jcem.82.12.4590 CrossRefGoogle Scholar
  12. 12.
    H. Shimizu, Y. Shimomura, R. Hayashi, K. Ohtani, N. Sato, T. Futawatari, M. Mori, Serum leptin concentration is associated with total body fat mass, but not abdominal fat distribution. Int. J. Obes. Relat. Metab. Disord. 21(7), 536–541 (1997)CrossRefPubMedGoogle Scholar
  13. 13.
    H. Munzberg, L. Huo, E.A. Nillni, A.N. Hollenberg, C. Bjorbaek, Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144(5), 2121–2131 (2003). doi: 10.1210/en.2002-221037 CrossRefPubMedGoogle Scholar
  14. 14.
    C. Bjorbaek, J.K. Elmquist, J.D. Frantz, S.E. Shoelson, J.S. Flier, Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1(4), 619–625 (1998)CrossRefPubMedGoogle Scholar
  15. 15.
    J.G. Franco, C.P. Dias-Rocha, T.P. Fernandes, L. Albuquerque Maia, P.C. Lisboa, E.G. Moura, C.C. Pazos-Moura, I.H. Trevenzoli, Resveratrol treatment rescues hyperleptinemia and improves hypothalamic leptin signaling programmed by maternal high-fat diet in rats. Eur. J. Nutr. (2015). doi: 10.1007/s00394-015-0880-7 PubMedCentralGoogle Scholar
  16. 16.
    M. Mazariegos, M.R. Zea, Breastfeeding and non-communicable diseases later in life. Arch. Latinoam. Nutr. 65(3), 143–151 (2015)PubMedGoogle Scholar
  17. 17.
    K.F. Michaelsen, A. Larnkjaer, C. Molgaard, Amount and quality of dietary proteins during the first two years of life in relation to NCD risk in adulthood. Nutr. Metab. Cardiovasc. Dis. 22(10), 781–786 (2012). doi: 10.1016/j.numecd.2012.03.014 CrossRefPubMedGoogle Scholar
  18. 18.
    B.A. Rolls, M.I. Gurr, P.M. van Duijvenvoorde, B.J. Rolls, E.A. Rowe, Lactation in lean and obese rats: effect of cafeteria feeding and of dietary obesity on milk composition. Physiol. Behav. 38(2), 185–190 (1986)CrossRefPubMedGoogle Scholar
  19. 19.
    J.L. Saben, E.S. Bales, M.R. Jackman, D. Orlicky, P.S. MacLean, J.L. McManaman, Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS One 9(5), e98066 (2014). doi: 10.1371/journal.pone.0098066 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    J.T. Smith, B.J. Waddell, Leptin distribution and metabolism in the pregnant rat: transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids. Endocrinology 144(7), 3024–3030 (2003). doi: 10.1210/en.2003-0145 CrossRefPubMedGoogle Scholar
  21. 21.
    B. Sun, R.H. Purcell, C.E. Terrillion, J. Yan, T.H. Moran, K.L. Tamashiro, Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes 61(11), 2833–2841 (2012). doi: 10.2337/db11-0957 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    A.E. Hirata, I.S. Andrade, P. Vaskevicius, M.S. Dolnikoff, Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz. J. Med. Biol. Res. 30(5), 671–674 (1997)CrossRefPubMedGoogle Scholar
  23. 23.
    R.A. Miranda, A.R. Agostinho, I.H. Trevenzoli, L.F. Barella, C.C. Franco, A.B. Trombini, A. Malta, C. Gravena, R. Torrezan, P.C. Mathias, J.C. de Oliveira, Insulin oversecretion in MSG-obese rats is related to alterations in cholinergic muscarinic receptor subtypes in pancreatic islets. Cell. Physiol. Biochem. 33(4), 1075–1086 (2014). doi: 10.1159/000358677 CrossRefPubMedGoogle Scholar
  24. 24.
    K.E. de Campos, Y.K. Sinzato, W. de Pimenta, M.V. Rudge, D.C. Damasceno, Effect of maternal obesity on diabetes development in adult rat offspring. Life Sci. 81((19–20)), 1473–1478 (2007). doi: 10.1016/j.lfs.2007.09.016 CrossRefPubMedGoogle Scholar
  25. 25.
    L.L. Bernardis, B.D. Patterson, Correlation between ‘Lee index’ and carcass fat content in weanling and adult female rats with hypothalamic lesions. J. Endocrinol. 40(4), 527–528 (1968)CrossRefPubMedGoogle Scholar
  26. 26.
    J.S. Wattez, F. Delahaye, L.F. Barella, A. Dickes-Coopman, V. Montel, C. Breton, P. Mathias, B. Foligne, J. Lesage, D. Vieau, Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat. J. Dev. Orig. Health Dis. 5(2), 109–120 (2014). doi: 10.1017/S2040174413000548 CrossRefPubMedGoogle Scholar
  27. 27.
    F.M. Howells, L. Bindewald, V.A. Russell, Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav. Brain Funct. 5, 24 (2009). doi: 10.1186/1744-9081-5-24 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    R.W. van Vugt, F. Meyer, J.A. van Hulten, J. Vernooij, A.R. Cools, M.M. Verheij, G.J. Martens, Maternal care affects the phenotype of a rat model for schizophrenia. Front. Behav. Neurosci. 8, 268 (2014). doi: 10.3389/fnbeh.2014.00268 PubMedPubMedCentralGoogle Scholar
  29. 29.
    E.J. DePeters, R.C. Hovey, Methods for collecting milk from mice. J. Mammary Gland Biol. Neoplasia 14(4), 397–400 (2009). doi: 10.1007/s10911-009-9158-0 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    N. Boumahrou, S. Andrei, G. Miranda, C. Henry, J.J. Panthier, P. Martin, S. Bellier, The major protein fraction of mouse milk revisited using proven proteomic tools. J. Physiol. Pharmacol. 60(Suppl 3), 113–118 (2009)PubMedGoogle Scholar
  31. 31.
    S. Grassiolli, C. Gravena, P.C. FreitasMathias, Muscarinic M2 receptor is active on pancreatic islets from hypothalamic obese rat. Eur. J. Pharmacol. 556(1–3), 223–228 (2007). doi: 10.1016/j.ejphar.2006.11.022 CrossRefPubMedGoogle Scholar
  32. 32.
    P. Trinder, Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22(2), 158–161 (1969)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18(6), 499–502 (1972)PubMedGoogle Scholar
  34. 34.
    A.M. Scott, I. Atwater, E. Rojas, A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans. Diabetologia 21(5), 470–475 (1981)CrossRefPubMedGoogle Scholar
  35. 35.
    C. Gravena, P.C. Mathias, S.J. Ashcroft, Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J. Endocrinol. 173(1), 73–80 (2002)CrossRefPubMedGoogle Scholar
  36. 36.
    J.C. de Oliveira, P.C. Lisboa, E.G. de Moura, L.F. Barella, R.A. Miranda, A. Malta, C.C. Franco, T.A. Ribeiro, R. Torrezan, C. Gravena, P.C. Mathias, Poor pubertal protein nutrition disturbs glucose-induced insulin secretion process in pancreatic islets and programs rats in adulthood to increase fat accumulation. J. Endocrinol. 216(2), 195–206 (2013). doi: 10.1530/JOE-12-0408 CrossRefPubMedGoogle Scholar
  37. 37.
    U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)CrossRefPubMedGoogle Scholar
  38. 38.
    M.C. Vogt, L. Paeger, S. Hess, S.M. Steculorum, M. Awazawa, B. Hampel, S. Neupert, H.T. Nicholls, J. Mauer, A.C. Hausen, R. Predel, P. Kloppenburg, T.L. Horvath, J.C. Bruning, Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 156(3), 495–509 (2014). doi: 10.1016/j.cell.2014.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    P.A. Trotta, E.G. Moura, J.G. Franco, N.S. Lima, E. Oliveira, A. Cordeiro, L.L. Souza, K.J. Oliveira, P.C. Lisboa, C.C. PazosMoura, M.C. Passos, Blocking leptin action one week after weaning reverts most of the programming caused by neonatal hyperleptinemia in the adult rat. Horm. Metab. Res. 43(3), 171–177 (2011). doi: 10.1055/s-0031-1271694 CrossRefPubMedGoogle Scholar
  40. 40.
    L. Attig, G. Solomon, J. Ferezou, L. Abdennebi-Najar, M. Taouis, A. Gertler, J. Djiane, Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats. Int. J. Obes. 32(7), 1153–1160 (2008). doi: 10.1038/ijo.2008.39 CrossRefGoogle Scholar
  41. 41.
    L.F. Silva, B.E. Etchebarne, M.S. Nielsen, J.S. Liesman, M. Kiupel, M.J. VandeHaar, Intramammary infusion of leptin decreases proliferation of mammary epithelial cells in prepubertal heifers. J. Dairy Sci. 91(8), 3034–3044 (2008). doi: 10.3168/jds.2007-0761 CrossRefPubMedGoogle Scholar
  42. 42.
    J.F. Rodriguez-Sierra, R. Sridaran, C.A. Blake, Monosodium glutamate disruption of behavioral and endocrine function in the female rat. Neuroendocrinology 31(3), 228–235 (1980)CrossRefPubMedGoogle Scholar
  43. 43.
    M. Iqbal, V.G. Moisiadis, A. Kostaki, S.G. Matthews, Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic-pituitary-adrenal function. Endocrinology 153(7), 3295–3307 (2012). doi: 10.1210/en.2012-1054 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    C.C. Vega, L.A. Reyes-Castro, C.J. Bautista, F. Larrea, P.W. Nathanielsz, E. Zambrano, Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int. J. Obes. 39(4), 712–719 (2015). doi: 10.1038/ijo.2013.150 CrossRefGoogle Scholar
  45. 45.
    F. Ornellas, V. Souza-Mello, C.A. Mandarim-de-Lacerda, M.B. Aguila, Programming of obesity and comorbidities in the progeny: lessons from a model of diet-induced obese parents. PLoS One 10(4), e0124737 (2015). doi: 10.1371/journal.pone.0124737 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    D.S. Vido, M.B. Nejm, N.R. Silva, S.M. Silva, S.L. Cravo, J. Luz, Maternal obesity and late effects on offspring metabolism. Arq. Bras. Endocrinol. Metabol. 58(3), 301–307 (2014)CrossRefPubMedGoogle Scholar
  47. 47.
    B.E. Levin, A.A. Dunn-Meynell, W.A. Banks, Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286(1), R143–R150 (2004). doi: 10.1152/ajpregu.00393.2003 CrossRefPubMedGoogle Scholar
  48. 48.
    R.S. Ahima, D. Prabakaran, J.S. Flier, Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J. Clin. Investig. 101(5), 1020–1027 (1998). doi: 10.1172/JCI1176 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    M.J. Morris, H. Chen, Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int. J. Obes. 33(1), 115–122 (2009). doi: 10.1038/ijo.2008.213 CrossRefGoogle Scholar
  50. 50.
    J.G. Franco, T.P. Fernandes, C.P. Rocha, C. Calvino, C.C. Pazos-Moura, P.C. Lisboa, E.G. Moura, I.H. Trevenzoli, Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. J. Physiol. 590(Pt 21), 5503–5518 (2012). doi: 10.1113/jphysiol.2012.240655 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    S.E. Mitchell, R. Nogueiras, A. Morris, S. Tovar, C. Grant, M. Cruickshank, D.V. Rayner, C. Dieguez, L.M. Williams, Leptin receptor gene expression and number in the brain are regulated by leptin level and nutritional status. J. Physiol. 587(Pt 14), 3573–3585 (2009). doi: 10.1113/jphysiol.2009.173328 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    S. Lee, K.A. Lee, G.Y. Choi, M. Desai, S.H. Lee, M.G. Pang, I. Jo, Y.J. Kim, Feed restriction during pregnancy/lactation induces programmed changes in lipid, adiponectin and leptin levels with gender differences in rat offspring. J Matern. Fetal. Neonatal. Med. 26(9), 908–914 (2013). doi: 10.3109/14767058.2013.766686 CrossRefPubMedGoogle Scholar
  53. 53.
    P.A. Matthews, A.M. Samuelsson, P. Seed, J. Pombo, J.A. Oben, L. Poston, P.D. Taylor, Fostering in mice induces cardiovascular and metabolic dysfunction in adulthood. J. Physiol. 589(Pt 16), 3969–3981 (2011). doi: 10.1113/jphysiol.2011.212324 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    J.P. Despres, Lipoprotein metabolism in visceral obesity. Int. J. Obes. 15(Suppl 2), 45–52 (1991)PubMedGoogle Scholar
  55. 55.
    G.S. Tannenbaum, W. Gurd, M. Lapointe, Leptin is a potent stimulator of spontaneous pulsatile growth hormone (GH) secretion and the GH response to GH-releasing hormone. Endocrinology 139(9), 3871–3875 (1998). doi: 10.1210/endo.139.9.6206 PubMedGoogle Scholar
  56. 56.
    A. Perez-Perez, J. Maymo, Y. Gambino, J.L. Duenas, R. Goberna, C. Varone, V. Sanchez-Margalet, Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells. Biol. Reprod. 81(5), 826–832 (2009). doi: 10.1095/biolreprod.109.076513 CrossRefPubMedGoogle Scholar
  57. 57.
    S. Rajia, H. Chen, M.J. Morris, Maternal overnutrition impacts offspring adiposity and brain appetite markers-modulation by postweaning diet. J. Neuroendocrinol. 22(8), 905–914 (2010). doi: 10.1111/j.1365-2826.2010.02005.x PubMedGoogle Scholar
  58. 58.
    A.E. Andreazzi, S. Grassiolli, P.B. Marangon, A.G. Martins, J.C. de Oliveira, R. Torrezan, C. Gravena, R.M.G. Garcia, P.C. Mathias, Impaired sympathoadrenal axis function contributes to enhanced insulin secretion in prediabetic obese rats. Exp. Diabetes Res. 2011, 947917 (2011). doi: 10.1155/2011/947917 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    A.C. Marçal, S. Grassiolli, D.N. da Rocha, M.A. Puzzi, C. Gravena, D.X. Scomparin, P.C. de Freitas Mathias, The dual effect of isoproterenol on insulin release is suppressed in pancreatic islets from hypothalamic obese rats. Endocrine 29(3), 445–449 (2006)CrossRefPubMedGoogle Scholar
  60. 60.
    O. Ballard, A.L. Morrow, Human milk composition: nutrients and bioactive factors. Pediatr. Clin. N. Am. 60(1), 49–74 (2013). doi: 10.1016/j.pcl.2012.10.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rosiane Aparecida Miranda
    • 1
    • 2
    Email author
  • Claudinéia Conationi da Silva Franco
    • 1
  • Júlio Cezar de Oliveira
    • 3
  • Luiz Felipe Barella
    • 4
  • Laize Peron Tófolo
    • 1
  • Tatiane Aparecida Ribeiro
    • 1
  • Audrei Pavanello
    • 1
  • Ellen Paula Santos da Conceição
    • 5
  • Rosana Torrezan
    • 6
  • James Armitage
    • 7
  • Patrícia Cristina Lisboa
    • 5
  • Egberto Gaspar de Moura
    • 5
  • Paulo Cezar de Freitas Mathias
    • 1
  • Elaine Vieira
    • 1
  1. 1.Department of Biotechnology, Cell Biology and GeneticsState University of Maringá/UEMMaringáBrazil
  2. 2.Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Health Sciences InstituteFederal University of Mato GrossoSinopBrazil
  4. 4.Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  5. 5.Department of Physiological Sciences Roberto Alcântara Gomes Biology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
  6. 6.Department of Physiological SciencesState University of MaringáMaringáBrazil
  7. 7.School of Medicine (Optometr)Deakin UniversityGeelongAustralia

Personalised recommendations