Skip to main content

Advertisement

Log in

Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2016

Abstract

Low-density lipoprotein (LDL) cholesterol plays a pivotal role in the pathogenesis of atherosclerotic cardiovascular disease (CVD). The discovery that proprotein convertase subtilisin/kexin type 9 (PCSK9) represents a key regulator pathway for hepatic LDL receptor (LDLR) degradation sheds light on new uncovered issues regarding LDL-C homeostasis. Indeed, as confirmed by phase II and III clinical trials with monoclonal antibodies, targeting PCSK9 represents the newest and most promising pharmacological tool for the treatment of hypercholesterolemia and related CVD. However, clinical, genetic, and experimental evidence indicates that PCSK9 may be either a cause or an effect in the context of metabolic syndrome (MetS), a condition comprising a cluster of risk factors including insulin resistance, obesity, hypertension, and atherogenic dyslipidemia. The latter is characterized by a triad of hypertriglyceridemia, low plasma concentrations of high-density lipoproteins, and qualitative changes in LDLs. PCSK9 levels seem to correlate with many of these lipid parameters as well as with the insulin sensitivity indices, although the molecular mechanisms behind this association are still unknown or not completely elucidated. Nevertheless, this area of research represents an important starting point for a better understanding of the physiological role of PCSK9, also considering the recent approval of new therapies involving anti-PCSK9. Thus, in the present review, we will discuss the current knowledge on the role of PCSK9 in the context of MetS, alteration of lipids, glucose homeostasis, and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.M. Grundy, Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 28(4), 629–636 (2008). doi:10.1161/ATVBAHA.107.151092

    Article  CAS  PubMed  Google Scholar 

  2. K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P. James, C.M. Loria, S.C. Smith Jr, International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16), 1640–1645 (2009). doi:10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  3. Cholesterol Treatment Trialists, P.M. Kearney, L. Blackwell, R. Collins, A. Keech, J. Simes, R. Peto, J. Armitage, C. Baigent, Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371(9607), 117–125 (2008). doi:10.1016/S0140-6736(08)60104-X

    Article  CAS  Google Scholar 

  4. A.L. Catapano, Z. Reiner, G. De Backer, I. Graham, M.R. Taskinen, O. Wiklund, S. Agewall, E. Alegria, M. Chapman, P. Durrington, S. Erdine, J. Halcox, R. Hobbs, J. Kjekshus, P.P. Filardi, G. Riccardi, R.F. Storey, D. Wood, European Society of Cardiology, European Atherosclerosis Society, ESC/EAS Guidelines for the management of dyslipidaemias. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 217(1), 3–46 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. R. Scott, R. O’Brien, G. Fulcher, C. Pardy, M. D’Emden, D. Tse, M.R. Taskinen, C. Ehnholm, A. Keech, I. Fenofibrate, Event lowering in diabetes study. I: Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care 32(3), 493–498 (2009). doi:10.2337/dc08-1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M.E. Haas, A.D. Attie, S.B. Biddinger, The regulation of ApoB metabolism by insulin. Trends Endocrinol. Metab. 24(8), 391–397 (2013). doi:10.1016/j.tem.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  7. M.P. van der Aa, S. Fazeli Farsani, L.A. Kromwijk, A. de Boer, C.A. Knibbe, M.M. van der Vorst, How to screen obese children at risk for type 2 diabetes mellitus? Clin. Pediatr. 53(4), 337–342 (2014). doi:10.1177/0009922813509480

    Article  Google Scholar 

  8. H.N. Ginsberg, Insulin resistance and cardiovascular disease. J. Clin. Invest. 106(4), 453–458 (2000). doi:10.1172/JCI10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H.N. Ginsberg, L.S. Huang, The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J. Cardiovasc. Risk 7(5), 325–331 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. I. Tabas, K.J. Williams, J. Boren, Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116(16), 1832–1844 (2007). doi:10.1161/CIRCULATIONAHA.106.676890

    Article  CAS  PubMed  Google Scholar 

  11. J.D. Sparks, C.E. Sparks, K. Adeli, Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 32(9), 2104–2112 (2012). doi:10.1161/ATVBAHA.111.241463

    Article  CAS  PubMed  Google Scholar 

  12. F.K. Welty, A. Alfaddagh, T.K. Elajami, Targeting inflammation in metabolic syndrome. Transl. Res. 167(1), 257–280 (2016). doi:10.1016/j.trsl.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  13. M.M. van Greevenbroek, C.G. Schalkwijk, C.D. Stehouwer, Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth. J. Med. 71(4), 174–187 (2013)

    PubMed  Google Scholar 

  14. N. Kloting, M. Bluher, Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 15(4), 277–287 (2014). doi:10.1007/s11154-014-9301-0

    Article  PubMed  CAS  Google Scholar 

  15. P. Libby, P.M. Ridker, A. Maseri, Inflammation and atherosclerosis. Circulation 105(9), 1135–1143 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. E. Chernogubova, R. Strawbridge, H. Mahdessian, A. Malarstig, S. Krapivner, B. Gigante, M.L. Hellenius, U. de Faire, A. Franco-Cereceda, A.C. Syvanen, J.S. Troutt, R.J. Konrad, P. Eriksson, A. Hamsten, F.M. van’t Hooft, Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler. Thromb. Vasc. Biol. 32(6), 1526–1534 (2012). doi:10.1161/ATVBAHA.111.240549

    Article  CAS  PubMed  Google Scholar 

  17. M. Ghosh, C. Galman, M. Rudling, B. Angelin, Influence of physiological changes in endogenous estrogen on circulating PCSK9 and LDL cholesterol. J. Lipid Res. 56(2), 463–469 (2015). doi:10.1194/jlr.M055780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Q. Feng, W.Q. Wei, C.P. Chung, R.T. Levinson, L. Bastarache, J.C. Denny, C.M. Stein, The effect of genetic variation in PCSK9 on the LDL-cholesterol response to statin therapy. Pharmacogenomics J. (2016). doi:10.1038/tpj.2016.3

    PubMed  Google Scholar 

  19. N.G. Seidah, S. Benjannet, L. Wickham, J. Marcinkiewicz, S.B. Jasmin, S. Stifani, A. Basak, A. Prat, M. Chretien, The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. U.S.A. 100(3), 928–933 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. G. Lambert, B. Sjouke, B. Choque, J.J. Kastelein, G.K. Hovingh, The PCSK9 decade. J. Lipid Res. 53(12), 2515–2524 (2012). doi:10.1194/jlr.R026658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Poirier, G. Mayer, S. Benjannet, E. Bergeron, J. Marcinkiewicz, N. Nassoury, H. Mayer, J. Nimpf, A. Prat, N.G. Seidah, The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283(4), 2363–2372 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. N. Ferri, A. Corsini, C. Macchi, P. Magni, M. Ruscica, Proprotein convertase subtilisin kexin type 9 and high-density lipoprotein metabolism: experimental animal models and clinical evidence. Transl. Res. (2015). doi:10.1016/j.trsl.2015.10.004

    PubMed  Google Scholar 

  23. S. Henrich, I. Lindberg, W. Bode, M.E. Than, Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J. Mol. Biol. 345(2), 211–227 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. D. Cunningham, D.E. Danley, K.F. Geoghegan, M.C. Griffor, J.L. Hawkins, T.A. Subashi, A.H. Varghese, M.J. Ammirati, J.S. Culp, L.R. Hoth, M.N. Mansour, K.M. McGrath, A.P. Seddon, S. Shenolikar, K.J. Stutzman-Engwall, L.C. Warren, D. Xia, X. Qiu, Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol. 14(5), 413–419 (2007). doi:10.1038/nsmb1235

    Article  CAS  PubMed  Google Scholar 

  25. N.G. Seidah, A. Prat, Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem. 38, 79–94 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Z. Awan, A. Baass, J. Genest, Proprotein convertase subtilisin/kexin type 9 (PCSK9): lessons learned from patients with hypercholesterolemia. Clin. Chem. 60(11), 1380–1389 (2014). doi:10.1373/clinchem.2014.225946

    Article  CAS  PubMed  Google Scholar 

  27. A.S. Peterson, L.G. Fong, S.G. Young, PCSK9 function and physiology. J. Lipid Res. 49(7), 1595–1599 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J.L. Goldstein, M.S. Brown, The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29(4), 431–438 (2009). doi:10.1161/ATVBAHA.108.179564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y.W. Qian, R.J. Schmidt, Y. Zhang, S. Chu, A. Lin, H. Wang, X. Wang, T.P. Beyer, W.R. Bensch, W. Li, M.E. Ehsani, D. Lu, R.J. Konrad, P.I. Eacho, D.E. Moller, S.K. Karathanasis, G. Cao, Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J. Lipid Res. 48(7), 1488–1498 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. H.J. Kwon, T.A. Lagace, M.C. McNutt, J.D. Horton, J. Deisenhofer, Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl. Acad. Sci. U.S.A. 105(6), 1820–1825 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Abifadel, S. Elbitar, P. El Khoury, Y. Ghaleb, M. Chemaly, M.L. Moussalli, J.P. Rabes, M. Varret, C. Boileau, Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr. Atheroscler. Rep. 16(9), 439 (2014). doi:10.1007/s11883-014-0439-8

    Article  PubMed  CAS  Google Scholar 

  32. T.B. Strom, K. Tveten, T.P. Leren, PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum. Biochem. J. 457(1), 99–105 (2014). doi:10.1042/BJ20130930

    Article  CAS  PubMed  Google Scholar 

  33. S. Poirier, G. Mayer, V. Poupon, P.S. McPherson, R. Desjardins, K. Ly, M.C. Asselin, R. Day, F.J. Duclos, M. Witmer, R. Parker, A. Prat, N.G. Seidah, Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J. Biol. Chem. 284(42), 28856–28864 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. H.E. Careskey, R.A. Davis, W.E. Alborn, J.S. Troutt, G. Cao, R.J. Konrad, Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J. Lipid Res. 49(2), 394–398 (2008). doi:10.1194/jlr.M700437-JLR200

    Article  CAS  PubMed  Google Scholar 

  35. H.J. Jeong, H.S. Lee, K.S. Kim, Y.K. Kim, D. Yoon, S.W. Park, Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res. 49(2), 399–409 (2008). doi:10.1194/jlr.M700443-JLR200

    Article  CAS  PubMed  Google Scholar 

  36. H. Li, B. Dong, S.W. Park, H.S. Lee, W. Chen, J. Liu, Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 284(42), 28885–28895 (2009). doi:10.1074/jbc.M109.052407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M.S. Brown, J.L. Goldstein, The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89(3), 331–340 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. D. Eberle, B. Hegarty, P. Bossard, P. Ferre, F. Foufelle, SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86(11), 839–848 (2004). doi:10.1016/j.biochi.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  39. J.D. Horton, N.A. Shah, J.A. Warrington, N.N. Anderson, S.W. Park, M.S. Brown, J.L. Goldstein, Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. U.S.A. 100(21), 12027–12032 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C. Pramfalk, Z.Y. Jiang, Q. Cai, H. Hu, S.D. Zhang, T.Q. Han, M. Eriksson, P. Parini, HNF1alpha and SREBP2 are important regulators of NPC1L1 in human liver. J. Lipid Res. 51(6), 1354–1362 (2010). doi:10.1194/jlr.M900274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. V.R. Shende, M. Wu, A.B. Singh, B. Dong, C.F. Kan, J. Liu, Reduction of circulating PCSK9 and LDL-C levels by liver-specific knockdown of HNF1alpha in normolipidemic mice. J. Lipid Res. 56(4), 801–809 (2015). doi:10.1194/jlr.M052969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. P. Costet, B. Cariou, G. Lambert, F. Lalanne, B. Lardeux, A.L. Jarnoux, A. Grefhorst, B. Staels, M. Krempf, Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J. Biol. Chem. 281(10), 6211–6218 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. L. Persson, G. Cao, L. Stahle, B.G. Sjoberg, J.S. Troutt, R.J. Konrad, C. Galman, H. Wallen, M. Eriksson, I. Hafstrom, S. Lind, M. Dahlin, P. Amark, B. Angelin, M. Rudling, Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler. Thromb. Vasc. Biol. 30(12), 2666–2672 (2010). doi:10.1161/ATVBAHA.110.214130

    Article  CAS  PubMed  Google Scholar 

  44. J.D. Browning, J.D. Horton, Fasting reduces plasma proprotein convertase, subtilisin/kexin type 9 and cholesterol biosynthesis in humans. J. Lipid Res. 51(11), 3359–3363 (2010). doi:10.1194/jlr.P009860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. C. Richard, P. Couture, S. Desroches, S. Benjannet, N.G. Seidah, A.H. Lichtenstein, B. Lamarche, Effect of the Mediterranean diet with and without weight loss on surrogate markers of cholesterol homeostasis in men with the metabolic syndrome. Br. J. Nutr. 107(5), 705–711 (2012). doi:10.1017/S0007114511003436

    Article  CAS  PubMed  Google Scholar 

  46. C. Rodriguez-Perez, V.R. Ramprasath, S. Pu, A. Sabra, R. Quirantes-Pine, A. Segura-Carretero, P.J. Jones, Docosahexaenoic acid attenuates cardiovascular risk factors via a decline in proprotein convertase subtilisin/kexin type 9 (PCSK9) plasma levels. Lipids 51(1), 75–83 (2016). doi:10.1007/s11745-015-4099-4

    Article  CAS  PubMed  Google Scholar 

  47. H. Bjermo, D. Iggman, J. Kullberg, I. Dahlman, L. Johansson, L. Persson, J. Berglund, K. Pulkki, S. Basu, M. Uusitupa, M. Rudling, P. Arner, T. Cederholm, H. Ahlstrom, U. Riserus, Effects of n − 6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 95(5), 1003–1012 (2012). doi:10.3945/ajcn.111.030114

    Article  CAS  PubMed  Google Scholar 

  48. P. Simonen, U.H. Stenman, H. Gylling, Serum proprotein convertase subtilisin/kexin type 9 concentration is not increased by plant stanol ester consumption in normo- to moderately hypercholesterolaemic non-obese subjects. The BLOOD FLOW intervention study. Clin. Sci. 129(5), 439–446 (2015). doi:10.1042/CS20150193

    Article  CAS  PubMed  Google Scholar 

  49. M. Rudling, B. Angelin, Stimulation of rat hepatic low density lipoprotein receptors by glucagon. Evidence of a novel regulatory mechanism in vivo. J. Clin. Invest. 91(6), 2796–2805 (1993). doi:10.1172/JCI116522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. L. Persson, C. Galman, B. Angelin, M. Rudling, Importance of proprotein convertase subtilisin/kexin type 9 in the hormonal and dietary regulation of rat liver low-density lipoprotein receptors. Endocrinology 150(3), 1140–1146 (2009). doi:10.1210/en.2008-1281

    Article  CAS  PubMed  Google Scholar 

  51. J. Miao, P.V. Manthena, M.E. Haas, A.V. Ling, D.J. Shin, M.J. Graham, R.M. Crooke, J. Liu, S.B. Biddinger, Role of insulin in the regulation of proprotein convertase subtilisin/kexin type 9. Arterioscler. Thromb. Vasc. Biol. 35(7), 1589–1596 (2015). doi:10.1161/ATVBAHA.115.305688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. H. Khodabandehloo, S. Gorgani-Firuzjaee, G. Panahi, R. Meshkani, Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl. Res. 167(1), 228–256 (2016). doi:10.1016/j.trsl.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  53. L. Patel, A.C. Buckels, I.J. Kinghorn, P.R. Murdock, J.D. Holbrook, C. Plumpton, C.H. Macphee, S.A. Smith, Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem. Biophys. Res. Commun. 300(2), 472–476 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. S. Rashid, J.J. Kastelein, PCSK9 and resistin at the crossroads of the atherogenic dyslipidemia. Expert Rev. Cardiovasc. Ther. 11(11), 1567–1577 (2013). doi:10.1586/14779072.2013.839204

    Article  CAS  PubMed  Google Scholar 

  55. P. Codoner-Franch, E. Alonso-Iglesias, Resistin: insulin resistance to malignancy. Clin. Chim. Acta 438, 46–54 (2015). doi:10.1016/j.cca.2014.07.043

    Article  CAS  PubMed  Google Scholar 

  56. E.N. Hampton, M.W. Knuth, J. Li, J.L. Harris, S.A. Lesley, G. Spraggon, The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain. Proc. Natl. Acad. Sci. U.S.A. 104(37), 14604–14609 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. M. Melone, L. Wilsie, O. Palyha, A. Strack, S. Rashid, Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J. Am. Coll. Cardiol. 59(19), 1697–1705 (2012)

    Article  CAS  PubMed  Google Scholar 

  58. M. Ruscica, C. Ricci, C. Macchi, P. Magni, R. Cristofani, J. Liu, A. Corsini, N. Ferri, Suppressor of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin kexin type 9 (PCSK9) expression in hepatic HepG2 cell line. J. Biol. Chem. (2015). doi:10.1074/jbc.M115.664706

    PubMed  Google Scholar 

  59. S.G. Lakoski, T.A. Lagace, J.C. Cohen, J.D. Horton, H.H. Hobbs, Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 94(7), 2537–2543 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. L. Persson, P. Henriksson, E. Westerlund, O. Hovatta, B. Angelin, M. Rudling, Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler. Thromb. Vasc. Biol. 32(3), 810–814 (2012). doi:10.1161/ATVBAHA.111.242461

    Article  CAS  PubMed  Google Scholar 

  61. G.F. Lewis, G. Steiner, Hypertriglyceridemia and its metabolic consequences as a risk factor for atherosclerotic cardiovascular disease in non-insulin-dependent diabetes mellitus. Diabetes Metab. Rev. 12(1), 37–56 (1996). doi:10.1002/(SICI)1099-0895(199603)12:1<37:AID-DMR154>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  62. K. Adeli, C. Taghibiglou, S.C. Van Iderstine, G.F. Lewis, Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Trends Cardiovasc. Med. 11(5), 170–176 (2001)

    Article  CAS  PubMed  Google Scholar 

  63. F. Shojaee-Moradie, Y. Ma, S. Lou, R. Hovorka, A.M. Umpleby, Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Diabetes 62(12), 4063–4069 (2013). doi:10.2337/db13-0935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. W.E. Alborn, G. Cao, H.E. Careskey, Y.W. Qian, D.R. Subramaniam, J. Davies, E.M. Conner, R.J. Konrad, Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin. Chem. 53(10), 1814–1819 (2007)

    Article  CAS  PubMed  Google Scholar 

  65. G. Dubuc, M. Tremblay, G. Pare, H. Jacques, J. Hamelin, S. Benjannet, L. Boulet, J. Genest, L. Bernier, N.G. Seidah, J. Davignon, A new method for measurement of total plasma PCSK9: clinical applications. J. Lipid Res. 51(1), 140–149 (2010). doi:10.1194/jlr.M900273-JLR200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. A. Baass, G. Dubuc, M. Tremblay, E.E. Delvin, J. O’Loughlin, E. Levy, J. Davignon, M. Lambert, Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin. Chem. 55(9), 1637–1645 (2009). doi:10.1373/clinchem.2009.126987

    Article  CAS  PubMed  Google Scholar 

  67. S.H. Yang, S. Li, Y. Zhang, R.X. Xu, Y.L. Guo, C.G. Zhu, N.Q. Wu, C.J. Cui, J. Sun, J.J. Li, Positive correlation of plasma PCSK9 levels with HbA in patients with type 2 diabetes. Diabetes/Metab. Res. Rev. (2015). doi:10.1002/dmrr.2712

    Google Scholar 

  68. B. Cariou, C. Langhi, M. Le Bras, M. Bortolotti, K.A. Le, F. Theytaz, C. Le May, B. Guyomarc’h-Delasalle, Y. Zair, R. Kreis, C. Boesch, M. Krempf, L. Tappy, P. Costet, Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr. Metab. 10(1), 4 (2013). doi:10.1186/1743-7075-10-4

    Article  CAS  Google Scholar 

  69. L. Tappy, K.A. Le, C. Tran, N. Paquot, Fructose and metabolic diseases: new findings, new questions. Nutrition 26(11–12), 1044–1049 (2010). doi:10.1016/j.nut.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  70. P.J. Kappelle, G. Lambert, R.P. Dullaart, Plasma proprotein convertase subtilisin-kexin type 9 does not change during 24 h insulin infusion in healthy subjects and type 2 diabetic patients. Atherosclerosis 214(2), 432–435 (2011). doi:10.1016/j.atherosclerosis.2010.10.028

    Article  CAS  PubMed  Google Scholar 

  71. Z. Awan, G. Dubuc, M. Faraj, R. Dufour, N.G. Seidah, J. Davignon, R. Rabasa-Lhoret, A. Baass, The effect of insulin on circulating PCSK9 in postmenopausal obese women. Clin. Biochem. 47(12), 1033–1039 (2014). doi:10.1016/j.clinbiochem.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  72. M.C. Brouwers, J.S. Troutt, M.M. van Greevenbroek, I. Ferreira, E.J. Feskens, C.J. van der Kallen, N.C. Schaper, C.G. Schalkwijk, R.J. Konrad, C.D. Stehouwer, Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: the CODAM study. Atherosclerosis 217(1), 263–267 (2011). doi:10.1016/j.atherosclerosis.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  73. B. Verges, L. Duvillard, M.C. Brindisi, E. Gautier, M. Krempf, P. Costet, B. Cariou, Lack of association between plasma PCSK9 and LDL-apoB100 catabolism in patients with uncontrolled type 2 diabetes. Atherosclerosis 219(1), 342–348 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. L. Pisciotta, R. Sallo, C. Rabacchi, A. Wunsch, S. Calandra, S. Bertolini, Leucine 10 allelic variant in signal peptide of PCSK9 increases the LDL cholesterol-lowering effect of statins in patients with familial hypercholesterolaemia. Nutr. Metab. Cardiovasc. Dis. 22(10), 831–835 (2012). doi:10.1016/j.numecd.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  75. Y.G. Saavedra, R. Dufour, A. Baass, Familial hypercholesterolemia: PCSK9 InsLEU genetic variant and prediabetes/diabetes risk. J. Clin. Lipidol. 9(6), 786–793 (2015). doi:10.1016/j.jacl.2015.08.005

    Article  PubMed  Google Scholar 

  76. Z. Awan, E.E. Delvin, E. Levy, J. Genest, J. Davignon, N.G. Seidah, A. Baass, Regional distribution and metabolic effect of PCSK9 insLEU and R46L gene mutations and apoE genotype. Can. J. Cardiol. 29(8), 927–933 (2013). doi:10.1016/j.cjca.2013.03.004

    Article  PubMed  Google Scholar 

  77. A. Bonnefond, L. Yengo, C. Le May, F. Fumeron, M. Marre, B. Balkau, G. Charpentier, S. Franc, P. Froguel, B. Cariou, DESIR Study Group, The loss-of-function PCSK9 p. R46L genetic variant does not alter glucose homeostasis. Diabetologia 58(9), 2051–2055 (2015). doi:10.1007/s00125-015-3659-8

    Article  CAS  PubMed  Google Scholar 

  78. J.G. Robinson, M. Farnier, M. Krempf, J. Bergeron, G. Luc, M. Averna, E.S. Stroes, G. Langslet, F.J. Raal, M. El Shahawy, M.J. Koren, N.E. Lepor, C. Lorenzato, R. Pordy, U. Chaudhari, J.J. Kastelein, O.L.T. Investigators, Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372(16), 1489–1499 (2015). doi:10.1056/NEJMoa1501031

    Article  CAS  PubMed  Google Scholar 

  79. M.S. Sabatine, R.P. Giugliano, S.D. Wiviott, F.J. Raal, D.J. Blom, J. Robinson, C.M. Ballantyne, R. Somaratne, J. Legg, S.M. Wasserman, R. Scott, M.J. Koren, E.A. Stein, Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators, Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372(16), 1500–1509 (2015). doi:10.1056/NEJMoa1500858

    Article  CAS  PubMed  Google Scholar 

  80. M. Ruscica, C. Macchi, B. Morlotti, C.R. Sirtori, P. Magni, Statin therapy and related risk of new-onset type 2 diabetes mellitus. Eur. J Intern. Med. 25(5), 401–406 (2014). doi:10.1016/j.ejim.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  81. C. Langhi, C. Le May, V. Gmyr, B. Vandewalle, J. Kerr-Conte, M. Krempf, F. Pattou, P. Costet, B. Cariou, PCSK9 is expressed in pancreatic delta-cells and does not alter insulin secretion. Biochem. Biophys. Res. Commun. 390(4), 1288–1293 (2009)

    Article  CAS  PubMed  Google Scholar 

  82. M. Mbikay, F. Sirois, J. Mayne, G.S. Wang, A. Chen, T. Dewpura, A. Prat, N.G. Seidah, M. Chretien, F.W. Scott, PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 584(4), 701–706 (2010). doi:10.1016/j.febslet.2009.12.018

    Article  CAS  PubMed  Google Scholar 

  83. B. Cariou, K. Si-Tayeb, C. Le May, Role of PCSK9 beyond liver involvement. Curr. Opin. Lipidol. 26(3), 155–161 (2015). doi:10.1097/MOL.0000000000000180

    Article  CAS  PubMed  Google Scholar 

  84. J. Spranger, A. Kroke, M. Mohlig, K. Hoffmann, M.M. Bergmann, M. Ristow, H. Boeing, A.F. Pfeiffer, Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52(3), 812–817 (2003)

    Article  CAS  PubMed  Google Scholar 

  85. C. Herder, J. Baumert, B. Thorand, W. Koenig, W. de Jager, C. Meisinger, T. Illig, S. Martin, H. Kolb, Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984–2002. Diabetologia 49(5), 921–929 (2006). doi:10.1007/s00125-006-0190-y

    Article  CAS  PubMed  Google Scholar 

  86. X. Wang, W. Bao, J. Liu, Y.Y. Ouyang, D. Wang, S. Rong, X. Xiao, Z.L. Shan, Y. Zhang, P. Yao, L.G. Liu, Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 36(1), 166–175 (2013). doi:10.2337/dc12-0702

    Article  CAS  PubMed  Google Scholar 

  87. M. Gerber, A. Boettner, B. Seidel, A. Lammert, J. Bar, E. Schuster, J. Thiery, W. Kiess, J. Kratzsch, Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. J. Clin. Endocrinol. Metab. 90(8), 4503–4509 (2005). doi:10.1210/jc.2005-0437

    Article  CAS  PubMed  Google Scholar 

  88. A. Corsini, N. Ferri, M. Cortellaro, Are pleiotropic effects of statins real? Vasc. Health Risk Manag. 3(5), 611–613 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. P.M. Ridker, E. Danielson, F.A. Fonseca, J. Genest, A.M. Gotto Jr, J.J. Kastelein, W. Koenig, P. Libby, A.J. Lorenzatti, J.G. Macfadyen, B.G. Nordestgaard, J. Shepherd, J.T. Willerson, R.J. Glynn, Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 373(9670), 1175–1182 (2009)

    Article  CAS  PubMed  Google Scholar 

  90. F.J. Raal, E.A. Stein, R. Dufour, T. Turner, F. Civeira, L. Burgess, G. Langslet, R. Scott, A.G. Olsson, D. Sullivan, G.K. Hovingh, B. Cariou, I. Gouni-Berthold, R. Somaratne, I. Bridges, R. Scott, S.M. Wasserman, D. Gaudet, RUTHERFORD-2 Investigators, PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet 385(9965), 331–340 (2015). doi:10.1016/S0140-6736(14)61399-4

    Article  CAS  PubMed  Google Scholar 

  91. J.J. Kastelein, S.E. Nissen, D.J. Rader, G.K. Hovingh, M.D. Wang, T. Shen, K.A. Krueger, Safety and efficacy of LY3015014, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9): a randomized, placebo-controlled Phase 2 study. Eur. Heart J. (2016). doi:10.1093/eurheartj/ehv707

    PubMed Central  Google Scholar 

  92. A. Sahebkar, P. Di Giosia, C.A. Stamerra, D. Grassi, C. Pedone, G. Ferretti, T. Bacchetti, C. Ferri, P. Giorgini, Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms. Br. J. Clin. Pharmacol. (2016). doi:10.1111/bcp.12905

    Google Scholar 

  93. K. Ouguerram, M. Chetiveaux, Y. Zair, P. Costet, M. Abifadel, M. Varret, C. Boileau, T. Magot, M. Krempf, Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler. Thromb. Vasc. Biol. 24(8), 1448–1453 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. J. Twisk, D.L. Gillian-Daniel, A. Tebon, L. Wang, P.H. Barrett, A.D. Attie, The role of the LDL receptor in apolipoprotein B secretion. J. Clin. Invest. 105(4), 521–532 (2000). doi:10.1172/JCI8623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. A.J. Kwakernaak, G. Lambert, R.P. Dullaart, Plasma proprotein convertase subtilisin-kexin type 9 is predominantly related to intermediate density lipoproteins. Clin. Biochem. 47(7–8), 679–682 (2014). doi:10.1016/j.clinbiochem.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  96. X.M. Sun, E.R. Eden, I. Tosi, C.K. Neuwirth, D. Wile, R.P. Naoumova, A.K. Soutar, Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum. Mol. Genet. 14(9), 1161–1169 (2005)

    Article  CAS  PubMed  Google Scholar 

  97. S.W. Park, Y.A. Moon, J.D. Horton, Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279(48), 50630–50638 (2004)

    Article  CAS  PubMed  Google Scholar 

  98. H. Sun, A. Samarghandi, N. Zhang, Z. Yao, M. Xiong, B.B. Teng, Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor. Arterioscler. Thromb. Vasc. Biol. 32(7), 1585–1595 (2012)

    Article  CAS  PubMed  Google Scholar 

  99. S. Rashid, H. Tavori, P.E. Brown, M.F. Linton, J. He, I. Giunzioni, S. Fazio, Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation 130(5), 431–441 (2014). doi:10.1161/CIRCULATIONAHA.113.006720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. H. Tavori, I. Giunzioni, I.M. Predazzi, D. Plubell, J. Miles, R.M. DeVay, H. Liang, S. Rashid, M.F. Linton, S. Fazio, Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc. Res. (2016). doi:10.1093/cvr/cvw053

    Google Scholar 

  101. B. Herbert, D. Patel, S.N. Waddington, E.R. Eden, A. McAleenan, X.M. Sun, A.K. Soutar, Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler. Thromb. Vasc. Biol. 30(7), 1333–1339 (2010)

    Article  CAS  PubMed  Google Scholar 

  102. A. Roubtsova, M.N. Munkonda, Z. Awan, J. Marcinkiewicz, A. Chamberland, C. Lazure, K. Cianflone, N.G. Seidah, A. Prat, Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol. 31(4), 785–791 (2011)

    Article  CAS  PubMed  Google Scholar 

  103. D.C. Chan, A.T. Wong, J. Pang, P.H. Barrett, G.F. Watts, Inter-relationships between proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III and plasma apolipoprotein B-48 transport in obese subjects: a stable isotope study in the postprandial state. Clin. Sci. 128(6), 379–385 (2015). doi:10.1042/CS20140559

    Article  CAS  PubMed  Google Scholar 

  104. C. Le May, S. Kourimate, C. Langhi, M. Chetiveaux, A. Jarry, C. Comera, X. Collet, F. Kuipers, M. Krempf, B. Cariou, P. Costet, Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler. Thromb. Vasc. Biol. 29(5), 684–690 (2009)

    Article  PubMed  CAS  Google Scholar 

  105. C. Le May, J.M. Berger, A. Lespine, B. Pillot, X. Prieur, E. Letessier, M.M. Hussain, X. Collet, B. Cariou, P. Costet, Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler. Thromb. Vasc. Biol. 33(7), 1484–1493 (2013). doi:10.1161/ATVBAHA.112.300263

    Article  PubMed  CAS  Google Scholar 

  106. G. Paradis, M. Lambert, J. O’Loughlin, C. Lavallee, J. Aubin, P. Berthiaume, M. Ledoux, E.E. Delvin, E. Levy, J.A. Hanley, The Quebec Child and Adolescent Health and Social Survey: design and methods of a cardiovascular risk factor survey for youth. Can. J. Cardiol. 19(5), 523–531 (2003)

    PubMed  Google Scholar 

  107. R.G. Victor, R.W. Haley, D.L. Willett, R.M. Peshock, P.C. Vaeth, D. Leonard, M. Basit, R.S. Cooper, V.G. Iannacchione, W.A. Visscher, J.M. Staab, H.H. Hobbs, Dallas Heart Study Investigators, The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am. J. Cardiol. 93(12), 1473–1480 (2004). doi:10.1016/j.amjcard.2004.02.058

    Article  PubMed  Google Scholar 

  108. M. Abifadel, M. Guerin, S. Benjannet, J.P. Rabes, W. Le Goff, Z. Julia, J. Hamelin, V. Carreau, M. Varret, E. Bruckert, L. Tosolini, O. Meilhac, P. Couvert, D. Bonnefont-Rousselot, J. Chapman, A. Carrie, J.B. Michel, A. Prat, N.G. Seidah, C. Boileau, Identification and characterization of new gain-of-function mutations in the PCSK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis 223(2), 394–400 (2012). doi:10.1016/j.atherosclerosis.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  109. L.H. Aung, R.X. Yin, L. Miao, X.J. Hu, T.T. Yan, X.L. Cao, D.F. Wu, Q. Li, S.L. Pan, J.Z. Wu, The proprotein convertase subtilisin/kexin type 9 gene E670G polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis. 10, 5 (2011). doi:10.1186/1476-511X-10-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. S. Hirayama, T. Miida, Small dense LDL: an emerging risk factor for cardiovascular disease. Clin. Chim. Acta 414, 215–224 (2012). doi:10.1016/j.cca.2012.09.010

    Article  CAS  PubMed  Google Scholar 

  111. S. Koba, Y. Yokota, T. Hirano, Y. Ito, Y. Ban, F. Tsunoda, T. Sato, M. Shoji, H. Suzuki, E. Geshi, Y. Kobayashi, T. Katagiri, Small LDL-cholesterol is superior to LDL-cholesterol for determining severe coronary atherosclerosis. J. Atheroscler. Thromb. 15(5), 250–260 (2008)

    Article  CAS  PubMed  Google Scholar 

  112. M.R. Diffenderfer, E.J. Schaefer, The composition and metabolism of large and small LDL. Curr. Opin. Lipidol. 25(3), 221–226 (2014). doi:10.1097/MOL.0000000000000067

    Article  CAS  PubMed  Google Scholar 

  113. Y. Zhang, R.X. Xu, S. Li, C.G. Zhu, Y.L. Guo, J. Sun, J.J. Li, Association of plasma small dense LDL cholesterol with PCSK9 levels in patients with angiographically proven coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 25(4), 426–433 (2015). doi:10.1016/j.numecd.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  114. C. Zheng, C. Khoo, J. Furtado, F.M. Sacks, Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 121(15), 1722–1734 (2010). doi:10.1161/CIRCULATIONAHA.109.875807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. M. Abifadel, M. Varret, J.P. Rabes, D. Allard, K. Ouguerram, M. Devillers, C. Cruaud, S. Benjannet, L. Wickham, D. Erlich, A. Derre, L. Villeger, M. Farnier, I. Beucler, E. Bruckert, J. Chambaz, B. Chanu, J.M. Lecerf, G. Luc, P. Moulin, J. Weissenbach, A. Prat, M. Krempf, C. Junien, N.G. Seidah, C. Boileau, Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34(2), 154–156 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Fondazione Cariplo Grants Rif. 2012-0549 (N.F.) and Rif. 2015-0552 (M.R.) and Piano di Sostegno per la Ricerca, Università degli Studi di Milano, 2015-2017 - Linea 2 (Azione A) (M.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Ruscica.

Ethics declarations

Conflict of Interest

All the authors declare that they have no conflict of interest with the contents of this article.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12020-016-1109-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, N., Ruscica, M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine 54, 588–601 (2016). https://doi.org/10.1007/s12020-016-0939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0939-0

Keywords

Navigation