Skip to main content
Log in

Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30–64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for <7.5, 7.5 to <16.5, and ≥16.5 metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P. James, C.M. Loria, S.C. Smith Jr, Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. S.H. Wu, Z. Liu, S.C. Ho, Metabolic syndrome and all-cause mortality: a meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 25, 375–384 (2010)

    Article  PubMed  Google Scholar 

  3. S. Mottillo, K.B. Filion, J. Genest, L. Joseph, L. Pilote, P. Poirier, S. Rinfret, E.L. Schiffrin, M.J. Eisenberg, The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 56, 1113–1132 (2010)

    Article  PubMed  Google Scholar 

  4. K. Esposito, P. Chiodini, A. Colao, A. Lenzi, D. Giugliano, Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 35, 2402–2411 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  5. G. Thomas, A.R. Sehgal, S.R. Kashyap, T.R. Srinivas, J.P. Kirwan, S.D. Navaneethan, Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 6, 2364–2373 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  6. E.S. Ford, C. Li, N. Sattar, Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care 31, 1898–1904 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  7. M.A. Cornier, D. Dabelea, T.L. Hernandez, R.C. Lindstrom, A.J. Steig, N.R. Stob, R.E. Van Pelt, H. Wang, R.H. Eckel, The metabolic syndrome. Endocr. Rev. 29, 777–822 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. D. He, B. Xi, J. Xue, P. Huai, M. Zhang, J. Li, Association between leisure time physical activity and metabolic syndrome: a meta-analysis of prospective cohort studies. Endocrine 46, 231–240 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Li, H. Yatsuya, H. Iso, K. Tamakoshi, H. Toyoshima, Incidence of metabolic syndrome according to combinations of lifestyle factors among middle-aged Japanese male workers. Prev. Med. 51, 118–122 (2010)

    Article  PubMed  Google Scholar 

  10. D.E. Laaksonen, H.M. Lakka, J.T. Salonen, L.K. Niskanen, R. Rauramaa, T.A. Lakka, Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care 25, 1612–1618 (2002)

    Article  PubMed  Google Scholar 

  11. P. Cheriyath, Y. Duan, Z. Qian, L. Nambiar, D. Liao, Obesity, physical activity and the development of metabolic syndrome: the atherosclerosis risk in Communities Study. Eur. J. Cardiovasc. Prev. Rehabil. 17, 309–313 (2010)

    PubMed  Google Scholar 

  12. P.T. Bradshaw, K.L. Monda, J. Stevens, Metabolic syndrome in healthy obese, overweight, and normal weight individuals: the atherosclerosis risk in Communities Study. Obesity (Silver Spring) 21, 203–209 (2013)

    Article  Google Scholar 

  13. A.H. Laursen, O.P. Kristiansen, J.L. Marott, P. Schnohr, E. Prescott, Intensity versus duration of physical activity: implications for the metabolic syndrome: a prospective cohort study. BMJ Open 2, e001711 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  14. I. Janssen, R. Ross, Vigorous intensity physical activity is related to the metabolic syndrome independent of the physical activity dose. Int. J. Epidemiol. 41, 132–140 (2012)

    Article  Google Scholar 

  15. A. Mozumdar, G. Liguori, Occupational physical activity and the metabolic syndrome among working women: a Go Red North Dakota study. J. Phys. Act. Health 8, 321–331 (2011)

    Article  PubMed  Google Scholar 

  16. H. Cai, J. Huang, G. Xu, Z. Yang, M. Liu, Y. Mi, W. Liu, H. Wang, D. Qian, Prevalence and determinants of metabolic syndrome among women in Chinese rural areas. PLoS One 7, e36936 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Halldin, M. Rosell, U. de Faire, M.L. Hellenius, The metabolic syndrome: prevalence and association to leisure-time and work-related physical activity in 60-year-old men and women. Nutr. Metab. Cardiovasc. Dis. 17, 349–357 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. M. Kwaśniewska, K. Kaczmarczyk-Chałas, M. Pikala, G. Broda, K. Kozakiewicz, A. Pająk, A. Tykarski, T. Zdrojewski, W. Drygas, Commuting physical activity and prevalence of metabolic disorders in Poland. Prev. Med. 51, 482–487 (2010)

    Article  PubMed  Google Scholar 

  19. A. Hori, A. Nanri, N. Sakamoto, K. Kuwahara, S. Nagahama, N. Kato, K. Fukasawa, K. Nakamoto, M. Ohtsu, A. Matsui, T. Kochi, M. Eguchi, T. Imai, A. Nishihara, K. Tomita, T. Murakami, C. Shimizu, M. Shimizu, T. Miyamoto, A. Uehara, M. Yamamoto, T. Nakagawa, S. Yamamoto, T. Honda, H. Okazaki, N. Sasaki, K. Kurotani, N.M. Pham, I. Kabe, T. Mizoue, T. Sone, S. Dohi, Japan Epidemiology Collaboration on Occupational Health Study Group, Comparison of body mass index, waist circumference, and waist-to-height ratio for predicting the clustering of cardiometabolic risk factors by age in Japanese workers. Circ. J. 78, 1160–1168 (2014)

    Article  PubMed  Google Scholar 

  20. K. Kuwahara, T. Honda, T. Nakagawa, S. Yamamoto, S. Akter, T. Hayashi, T. Mizoue, Associations of leisure-time, occupational, and commuting physical activity with risk of depressive symptoms among Japanese workers: a cohort study. Int. J. Behav. Nutr. Phys. Act. 12, 119 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 33(1), S62–S69 (2010)

    Article  PubMed Central  Google Scholar 

  22. Cabinet Office, Government of Japan, Public Opinion Survey on Physical Fitness and Sports (Government of Japan, Public Relations Office, 2006)

  23. B.E. Ainsworth, W.L. Haskell, S.D. Herrmann, N. Meckes, D.R. Bassett Jr, C. Tudor-Locke, J.L. Greer, J. Vezina, M.C. Whitt-Glover, A.S. Leon, 2011 compendium of physical activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43, 1575–1581 (2011)

    Article  PubMed  Google Scholar 

  24. Physical Activity Guidelines Advisory Committee, Physical Activity Guidelines Advisory Committee Report, 2008. U.S. Department of Health and Human Services (2008)

  25. World Health Organization, Global Recommendations on Physical Activity for Health (World Health Organization, Geneva, 2010)

    Google Scholar 

  26. C.P. Wen, J.P. Wai, M.K. Tsai, Y.C. Yang, T.Y. Cheng, M.C. Lee, H.T. Chan, C.K. Tsao, S.P. Tsai, X. Wu, Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378, 1244–1253 (2011)

    Article  PubMed  Google Scholar 

  27. T. Hayashi, K. Tsumura, C. Suematsu, K. Okada, S. Fujii, G. Endo, Walking to work and the risk for hypertension in men: the Osaka Health Survey. Ann. Intern. Med. 131, 21–26 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. K.K. Sato, T. Hayashi, H. Kambe, Y. Nakamura, N. Harita, G. Endo, T. Yoneda, Walking to work is an independent predictor of incidence of type 2 diabetes in Japanese men: the Kansai Healthcare Study. Diabetes Care 30, 2296–2298 (2007)

    Article  PubMed  Google Scholar 

  29. S.M. Bianchi, L.C. Sayer, M.A. Milkie, J.P. Robinson, Housework: who did, does or will do it, and how much does it matter? Soc. Forces 91, 55–63 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  30. K. Kuwahara, A. Uehara, K. Kurotani, N.M. Pham, A. Nanri, M. Yamamoto, T. Mizoue, Association of cardiorespiratory fitness and overweight with risk of type 2 diabetes in Japanese men. PLoS One 9, e98508 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  31. A. Norman, R. Bellocco, A. Bergstrom, A. Wolk, Validity and reproducibility of self-reported total physical activity: differences by relative weight. Int. J. Obes. Relat. Metab. Disord. 25, 682–688 (2001)

    Article  CAS  PubMed  Google Scholar 

  32. K.H. Pietiläinen, M. Korkeila, L.H. Bogl, K.R. Westerterp, H. Yki-Jarvinen, J. Kaprio, A. Rissanen, Inaccuracies in food and physical activity diaries of obese subjects: complementary evidence from doubly labeled water and co-twin assessments. Int. J. Obes. (Lond.) 34, 437–445 (2010)

    Article  Google Scholar 

  33. M.A. Beenackers, C.B. Kamphuis, K. Giskes, J. Brug, A.E. Kunst, A. Burdorf, F.J. van Lenthe, Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int. J. Behav. Nutr. Phys. Act. 9, 116 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  34. I. Sommer, U. Griebler, P. Mahlknecht, K. Thaler, K. Bouskill, G. Gartlehner, S. Mendis, Socioeconomic inequalities in non-communicable diseases and their risk factors: an overview of systematic reviews. BMC Public Health 15, 914 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  35. S.W. Ng, B.M. Popkin, Time use and physical activity: a shift away from movement across the globe. Obes. Rev. 13, 659–680 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J.M. Jakicic, The effect of physical activity on body weight. Obesity (Silver Spring) 17(3), S34–S38 (2009)

    Article  Google Scholar 

  37. C. Frosig, A.J. Rose, J.T. Treebak, B. Kiens, E.A. Richter, J.F. Wojtaszewski, Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 56, 2093–2102 (2007)

    Article  PubMed  Google Scholar 

  38. V.A. Cornelissen, R.H. Fagard, Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 46, 667–675 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. S. Mann, C. Beedie, A. Jimenez, Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 44, 211–221 (2014)

    Article  PubMed  Google Scholar 

  40. Y. Matsuzawa, T. Funahashi, T. Nakamura, The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 18, 629–639 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. E.G. Trapp, D.J. Chisholm, J. Freund, S.H. Boutcher, The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. (Lond.) 32, 684–691 (2008)

    Article  CAS  Google Scholar 

  42. R.H. Coker, R.H. Williams, P.M. Kortebein, D.H. Sullivan, W.J. Evans, Influence of exercise intensity on abdominal fat and adiponectin in elderly adults. Metab. Syndr. Relat. Disord. 7, 363–368 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C.E. Matthews, X.O. Shu, G. Yang, F. Jin, B.E. Ainsworth, D. Liu, Y.T. Gao, W. Zheng, Reproducibility and validity of the Shanghai Women’s Health Study physical activity questionnaire. Am. J. Epidemiol. 158, 1114–1122 (2003)

    Article  PubMed  Google Scholar 

  44. B.E. Ainsworth, A.S. Leon, M.T. Richardson, D.R. Jacobs, R.S. Paffenbarger Jr, Accuracy of the college alumnus physical activity questionnaire. J. Clin. Epidemiol. 46, 1403–1411 (1993)

    Article  CAS  PubMed  Google Scholar 

  45. N. Kurtze, V. Rangul, B.E. Hustvedt, W. Flanders, Reliability and validity of self-reported physical activity in the Nord-Trøndelag Health Study (HUNT 2). Eur. J. Epidemiol. 22, 379–387 (2007)

    Article  PubMed  Google Scholar 

  46. Y. Tsubono, I. Tsuji, K. Fujita, N. Nakaya, A. Hozawa, T. Ohkubo, A. Kuwahara, Y. Watanabe, K. Ogawa, Y. Nishino, S. Hisamichi, Validation of walking questionnaire for population-based prospective studies in Japan: comparison with pedometer. J. Epidemiol. 12, 305–309 (2002)

    Article  PubMed  Google Scholar 

  47. A.D. Frugé, S.H. Byrd, B.J. Fountain, J.S. Cossman, M.W. Schilling, P. Gerard, Increased physical activity may be more protective for metabolic syndrome than reduced caloric intake: an analysis of estimated energy balance in U.S. adults—2007–2010 NHANES. Nutr. Metab. Cardiovasc. Dis. 25, 535–540 (2015)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Maki Konishi (National Center for Global Health and Medicine) for data management, and Rika Osawa (National Center for Global Health and Medicine) for administrative support.

Funding

The present study was funded by a Grant-in-Aid for Young Scientists (B) (25871166) from the Japan Society for the Promotion of Science, and a fund from the Industrial Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Kuwahara.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest. Honda, T., Nakagawa, T., Yamamoto, S., and Hayashi, T. are occupational physician in the participating company.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwahara, K., Honda, T., Nakagawa, T. et al. Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome. Endocrine 53, 710–721 (2016). https://doi.org/10.1007/s12020-016-0911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0911-z

Keywords

Navigation