Skip to main content
Log in

Elevated circulating levels of betatrophin are associated with polycystic ovary syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Betatrophin is a newly identified hormone determined to be a potent inducer of pancreatic beta cell proliferation in response to insulin resistance in mice. Polycystic ovary syndrome (PCOS) is an inflammatory-based metabolic disease associated with insulin resistance. However, no evidence is available indicating whether betatrophin is involved in women with PCOS. The objective of this study was to ascertain whether betatrophin levels are altered in women with PCOS. This study was conducted in secondary referral center. This cross-sectional study included 164 women with PCOS and 164 age- and BMI-matched female controls. Circulating betatrophin levels were measured using ELISA. Metabolic and hormonal parameters were also determined. Circulating betatrophin levels were significantly elevated in women with PCOS compared with controls (367.09 ± 55.78 vs. 295.65 ± 48.97 pg/ml, P < 0.001). Betatrophin levels were positively correlated with insulin resistance marker homeostasis model assessment of insulin resistance (HOMA-IR), free-testosterone, high-sensitivity C-reactive protein (hs-CRP), atherogenic lipid profiles, and BMI in PCOS. Multivariate logistic regression analyses revealed that the odds ratio for PCOS was 2.51 for patients in the highest quartile of betatrophin compared with those in the lowest quartile (95 % CI 1.31–4.81, P = 0.006). Multivariate regression analyses showed that HOMA-IR, hs-CRP, and free-testosterone were independent factors influencing serum betatrophin levels. Betatrophin levels were increased in women with PCOS and were associated with insulin resistance, hs-CRP, and free-testosterone in these patients. Elevated betatrophin levels were found to increase the odds of having PCOS. Further research is needed to elucidate the physiologic and pathologic significance of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANGPLT8:

Angiopoetin-like 8 protein

BMI:

Body mass index

CI:

Confidence interval

CV:

Coefficient of variability

DHEA-S:

Dehydroepiandrosterone sulfate

E2 :

Estradiol

FBG:

Fasting blood glucose

FG:

Ferriman–Gallwey

GDM:

Gestational diabetes mellitus

HDL-C:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostasis model assessment of insulin resistance

hs-CRP:

High-sensitivity C-reactive protein

LDL-C:

Low-density lipoprotein cholesterol

OR:

Odds ratio

PCOS:

Polycystic ovary syndrome

RIFL:

Re-feeding induced fat and liver protein

TD26:

Hepatocellular carcinoma-associated protein

T2DM:

Type 2 diabetes mellitus

VIF:

Variance inflation factor

References

  1. D.A. Ehrmann, Polycystic ovary syndrome. N. Engl. J. Med. 352, 1223–1236 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. R. Azziz, K.S. Woods, R. Reyna, T.J. Key, E.S. Knochenhauer, B.O. Yildiz, The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89, 2745–2749 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. R.S. Legro, S.A. Arslanian, D.A. Ehrmann, K.M. Hoeger, M.H. Murad, R. Pasquali, C.K. Welt, Diagnosis and treatment of polycystic ovary syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 98, 4565–4592 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. C.N. Jayasena, S. Franks, The management of patients with polycystic ovary syndrome. Nat. Rev. Endocrinol. 10, 624–636 (2014)

    Article  PubMed  Google Scholar 

  5. R.A. Wild, E. Carmina, E. Diamanti-Kandarakis, A. Dokras, H.F. Escobar-Morreale, W. Futterweit, R. Lobo, R.J. Norman, E. Talbott, D.A. Dumesic, Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 95, 2038–2049 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. H. Mani, M.J. Levy, M.J. Davies, D.H. Morris, L.J. Gray, J. Bankart, H. Blackledge, K. Khunti, T.A. Howlett, Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin. Endocrinol. (Oxf) 78, 926–934 (2013)

    Article  Google Scholar 

  7. C.G. Solomon, F.B. Hu, A. Dunaif, J.E. Rich-Edwards, M.J. Stampfer, W.C. Willett, F.E. Speizer, J.E. Manson, Menstrual cycle irregularity and risk for future cardiovascular disease. J. Clin. Endocrinol. Metab. 87, 2013–2017 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. A. Dokras, Cardiovascular disease risk in women with PCOS. Steroids 78, 773–776 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. L.K. Hoffman, D.A. Ehrmann, Cardiometabolic features of polycystic ovary syndrome. Nat. Clin. Pract. Endocrinol. Metab. 4, 215–222 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. M.O. Goodarzi, D.A. Dumesic, G. Chazenbalk, R. Azziz, Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7, 219–231 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. G. Ren, J.Y. Kim, C.M. Smas, Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 303, E334–E351 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Zhang, Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem. Biophys. Res. Commun. 424, 786–792 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. F. Quagliarini, Y. Wang, J. Kozlitina, N.V. Grishin, R. Hyde, E. Boerwinkle, D.M. Valenzuela, A.J. Murphy, J.C. Cohen, H.H. Hobbs, Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl. Acad. Sci. USA 109, 19751–19756 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Yi, J.-S. Park, D.A. Melton, Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 153, 747–758 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Wang, F. Quagliarini, V. Gusarova, J. Gromada, D.M. Valenzuela, J.C. Cohen, H.H. Hobbs, Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc. Natl. Acad. Sci. USA 110, 16109–16114 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. Weissglas-Volkov, C.A. Aguilar-Salinas, E. Nikkola, K.A. Deere, I. Cruz-Bautista, O. Arellano-Campos, L.L. Muñoz-Hernandez, L. Gomez-Munguia, M.L. Ordoñez-Sánchez, P.M.V.L. Reddy, A.J. Lusis, N. Matikainen, M.-R. Taskinen, L. Riba, R.M. Cantor, J.S. Sinsheimer, T. Tusie-Luna, P. Pajukanta, Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J. Med. Genet. 50, 298–308 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G.M. Peloso, P.L. Auer, J.C. Bis, A. Voorman, A.C. Morrison, N.O. Stitziel, J.A. Brody, S.A. Khetarpal, J.R. Crosby, M. Fornage, A. Isaacs, J. Jakobsdottir, M.F. Feitosa, G. Davies, J.E. Huffman, A. Manichaikul, B. Davis, K. Lohman, A.Y. Joon, A.V. Smith, M.L. Grove, P. Zanoni, V. Redon, S. Demissie, K. Lawson, U. Peters, C. Carlson, R.D. Jackson, K.K. Ryckman, R.H. Mackey, J.G. Robinson, D.S. Siscovick, P.J. Schreiner, J.C. Mychaleckyj, J.S. Pankow, A. Hofman, A.G. Uitterlinden, T.B. Harris, K.D. Taylor, J.M. Stafford, L.M. Reynolds, R.E. Marioni, A. Dehghan, O.H. Franco, A.P. Patel, Y. Lu, G. Hindy, O. Gottesman, E.P. Bottinger, O. Melander, M. Orho-Melander, R.J.F. Loos, S. Duga, P.A. Merlini, M. Farrall, A. Goel, R. Asselta, D. Girelli, N. Martinelli, S.H. Shah, W.E. Kraus, M. Li, D.J. Rader, M.P. Reilly, R. McPherson, H. Watkins, D. Ardissino, NHLBI GO Exome Sequencing Project, Q. Zhang, J. Wang, M.Y. Tsai, H.A. Taylor, A. Correa, M.E. Griswold, L.A. Lange, J.M. Starr, I. Rudan, G. Eiriksdottir, L.J. Launer, J.M. Ordovas, D. Levy, Y.D.I. Chen, A.P. Reiner, C. Hayward, O. Polasek, I.J. Deary, I.B. Borecki, Y. Liu, V. Gudnason, J.G. Wilson, C.M. van Duijn, C. Kooperberg, S.S. Rich, B.M. Psaty, J.I. Rotter, C.J. O’Donnell, K. Rice, E. Boerwinkle, S. Kathiresan, L.A. Cupples, Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am. J. Hum. Genet. 94, 223–232 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. V. Gusarova, C.A. Alexa, E. Na, P.E. Stevis, Y. Xin, S. Bonner-Weir, J.C. Cohen, H.H. Hobbs, A.J. Murphy, G.D. Yancopoulos, J. Gromada, ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159, 691–696 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. Espes, M. Martinell, P.-O. Carlsson, Increased circulating betatrophin concentrations in patients with type 2 diabetes. Int. J. Endocrinol. 2014, 323407 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  20. A. Fenzl, B.K. Itariu, L. Kosi, M. Fritzer-Szekeres, A. Kautzky-Willer, T.M. Stulnig, F.W. Kiefer, Circulating betatrophin correlates with atherogenic lipid profiles but not with glucose and insulin levels in insulin-resistant individuals. Diabetologia 57, 1204–1208 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. J. Gomez-Ambrosi, E. Pascual, V. Catalan, A. Rodriguez, B. Ramirez, C. Silva, M.J. Gil, J. Salvador, G. Fruhbeck, Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J. Clin. Endocrinol. Metab. 99, E2004–E2009 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. T. Gao, K. Jin, P. Chen, H. Jin, L. Yang, X. Xie, M. Yang, C. Hu, X. Yu, Circulating betatrophin correlates with triglycerides and postprandial glucose among different glucose tolerance statuses-a case-control study. PLoS One 10, e0133640 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  23. R. Tarlatzis, B. Fauser, J. Chang, R. Azziz: Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). The Rotterdam ESHRE/ASRM-. Hum. Reprod. (2004)

  24. D. Ferriman, J.D. Gallwey, Clinical assessment of body hair growth in women. J. Clin. Endocrinol. Metab. 21, 1440–1447 (1961)

    Article  CAS  PubMed  Google Scholar 

  25. D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)

    Article  CAS  PubMed  Google Scholar 

  26. M.H. Shanik, Y. Xu, J. Skrha, R. Dankner, Y. Zick, J. Roth, Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31, S262–S268 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. E. Diamanti-Kandarakis, A. Dunaif, Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33, 981–1030 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. P.M. Catalano, Trying to understand gestational diabetes. Diab. Med. 31, 273–281 (2014)

    Article  CAS  Google Scholar 

  29. F. Ovalle, Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. Fertil. Steril. 77, 1095–1105 (2002)

    Article  PubMed  Google Scholar 

  30. A. Dunaif, Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis 1. Endocr. Rev. 18, 774–800 (1997)

    CAS  PubMed  Google Scholar 

  31. H. Hu, W. Sun, S. Yu, X. Hong, W. Qian, B. Tang, D. Wang, L. Yang, J. Wang, C. Mao, L. Zhou, G. Yuan, Increased circulating levels of betatrophin in newly diagnosed type 2 diabetic patients. Diab. Care 37, 2718–2722 (2014)

    Article  CAS  Google Scholar 

  32. M. Abu-Farha, J. Abubaker, I. Al-Khairi, P. Cherian, F. Noronha, F.B. Hu, K. Behbehani, N. Elkum, Higher plasma betatrophin/ANGPTL8 level in Type 2 Diabetes subjects does not correlate with blood glucose or insulin resistance. Sci. Rep. 5, 10949 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. N. Wawrusiewicz-Kurylonek, B. Telejko, M. Kuzmicki, A. Sobota, D. Lipinska, J. Pliszka, B. Raczkowska, P. Kuc, R. Urban, J. Szamatowicz, A. Kretowski, P. Laudanski, M. Gorska, Increased maternal and cord blood betatrophin in gestational diabetes. PLoS One 10, e0131171 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  34. O. Erol, H.Y. Ellidağ, H. Ayık, M.K. Özel, A.U. Derbent, N. Yılmaz, Evaluation of circulating betatrophin levels in gestational diabetes mellitus. Gynecol. Endocrinol. 31, 1–5 (2015)

    Article  Google Scholar 

  35. T. Ebert, S. Kralisch, U. Wurst, U. Lössner, J. Kratzsch, M. Blüher, M. Stumvoll, A. Tönjes, M. Fasshauer, Betatrophin levels are increased in women with gestational diabetes mellitus compared to healthy pregnant controls. Eur. J. Endocrinol. 173, 1–7 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. X. Chen, P. Lu, W. He, J. Zhang, L. Liu, Y. Yang, Z. Liu, J. Xie, S. Shao, T. Du, X. Su, X. Zhou, S. Hu, G. Yuan, M. Zhang, H. Zhang, L. Liu, D. Wang, X. Yu, Circulating betatrophin levels are increased in patients with type 2 diabetes and associated with insulin resistance. J. Clin. Endocrinol. Metab. 100, E96–E100 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.C., G.U.K., O.Y., and O.G.C. participated in study design and performed ELISA. M.C., P.Y., Y.M.S., and T.K. participated in study design, analyzed the data, wrote, reviewed, and edited the manuscript. O.Y. and M.T. provided serum samples and contributed to discussions of data interpretation. M.C. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Calan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study has not been funded by any organizations.

Disclosure

The authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calan, M., Yilmaz, O., Kume, T. et al. Elevated circulating levels of betatrophin are associated with polycystic ovary syndrome. Endocrine 53, 271–279 (2016). https://doi.org/10.1007/s12020-016-0875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0875-z

Keywords

Navigation