S. Herzberg-Schafer, M. Heni, N. Stefan, H.U. Haring, A. Fritsche, Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes. Metab. 14(Suppl 3), 85–90 (2012)
Article
PubMed
Google Scholar
M. Nauck, F. Stockmann, R. Ebert, W. Creutzfeldt, Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986)
CAS
Article
PubMed
Google Scholar
D.J. Drucker, The biology of incretin hormones. Cell Metab. 3, 153–165 (2006)
CAS
Article
PubMed
Google Scholar
Y. Ishibashi, T. Matsui, M. Takeuchi, S. Yamagishi, Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 391, 1405–1408 (2010)
CAS
Article
PubMed
Google Scholar
L. Ding, J. Zhang, Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 33, 75–81 (2012)
CAS
Article
PubMed
Google Scholar
G.G. Holz, Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5–13 (2004)
CAS
Article
PubMed
PubMed Central
Google Scholar
K. Ban, M.H. Noyan-Ashraf, J. Hoefer, S.S. Bolz, D.J. Drucker, M. Husain, Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008)
CAS
Article
PubMed
Google Scholar
T. Nystrom, M.K. Gutniak, Q. Zhang, F. Zhang, J.J. Holst, B. Ahren, A. Sjoholm, Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab. 287, E1209–E1215 (2004)
Article
PubMed
Google Scholar
A. Ceriello, K. Esposito, R. Testa, A.R. Bonfigli, M. Marra, D. Giugliano, The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care 34, 697–702 (2011)
CAS
Article
PubMed
PubMed Central
Google Scholar
H. Oeseburg, R.A. de Boer, H. Buikema, P. van der Harst, W.H. van Gilst, H.H. Sillje, Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler. Thromb. Vasc. Biol. 30, 1407–1414 (2010)
CAS
Article
PubMed
Google Scholar
A. Pecorelli, V. Bocci, A. Acquaviva, G. Belmonte, C. Gardi, F. Virgili, L. Ciccoli, G. Valacchi, NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 267, 30–40 (2013)
CAS
Article
PubMed
Google Scholar
J. Liu, Y. Liu, L. Chen, Y. Wang, J. Li, Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. J. Diabetes Res. 2013, 630537 (2013)
PubMed
PubMed Central
Google Scholar
B. Schisano, A.L. Harte, K. Lois, P. Saravanan, N. Al-Daghri, O. Al-Attas, L.B. Knudsen, P.G. McTernan, A. Ceriello, G. Tripathi, GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul. Pept. 174, 46–52 (2012)
CAS
Article
PubMed
Google Scholar
L. Zhao, H. Guo, H. Chen, R.B. Petersen, L. Zheng, A. Peng, K. Huang, Effect of Liraglutide on endoplasmic reticulum stress in diabetes. Biochem. Biophys. Res. Commun. 441, 133–138 (2013)
CAS
Article
PubMed
Google Scholar
A. Mima, J. Hiraoka-Yamomoto, Q. Li, M. Kitada, C. Li, P. Geraldes, M. Matsumoto, K. Mizutani, K. Park, C. Cahill, S. Nishikawa, C. Rask-Madsen, G.L. King, Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes 61, 2967–2979 (2012)
CAS
Article
PubMed
PubMed Central
Google Scholar
T.P. Solomon, S.H. Knudsen, K. Karstoft, K. Winding, J.J. Holst, B.K. Pedersen, Examining the effects of hyperglycemia on pancreatic endocrine function in humans: evidence for in vivo glucotoxicity. J. Clin. Endocrinol. Metab. 97, 4682–4691 (2012)
CAS
Article
PubMed
Google Scholar
C.J. Green, T.I. Henriksen, B.K. Pedersen, T.P. Solomon, Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One 7, e44284 (2012)
CAS
Article
PubMed
PubMed Central
Google Scholar
G. Xu, H. Kaneto, D.R. Laybutt, V.F. Duvivier-Kali, N. Trivedi, K. Suzuma, G.L. King, G.C. Weir, S. Bonner-Weir, Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56, 1551–1558 (2007)
CAS
Article
PubMed
Google Scholar
C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013)
CAS
Article
PubMed
Google Scholar
A.C. Brewer, T.V. Murray, M. Arno, M. Zhang, N.P. Anilkumar, G.E. Mann, A.M. Shah, Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic. Biol. Med. 51, 205–215 (2011)
CAS
Article
PubMed
PubMed Central
Google Scholar
D.J. Drucker, Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161–171 (2003)
CAS
Article
PubMed
Google Scholar
T. Forst, M.M. Weber, A. Pfutzner, Cardiovascular benefits of GLP-1-based therapies in patients with diabetes mellitus type 2: effects on endothelial and vascular dysfunction beyond glycemic control. Exp. Diabetes Res. 2012, 635472 (2012)
Article
PubMed
PubMed Central
Google Scholar
K. Ban, S. Hui, D.J. Drucker, M. Husain, Cardiovascular consequences of drugs used for the treatment of diabetes: potential promise of incretin-based therapies. J. Am. Soc. Hypertens. 3, 245–259 (2009)
Article
PubMed
Google Scholar
D. Accili, K.C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004)
CAS
Article
PubMed
Google Scholar
K. Soberg, T. Jahnsen, T. Rognes, B.S. Skalhegg, J.K. Laerdahl, Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits. PLoS One 8, e60935 (2013)
Article
PubMed
PubMed Central
Google Scholar
S. Rajan, L.M. Dickson, E. Mathew, C.M. Orr, J.H. Ellenbroek, L.H. Philipson, B. Wicksteed, Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic beta-cells via protein kinase A. Mol. Metab. 4, 265–276 (2015)
CAS
Article
PubMed
PubMed Central
Google Scholar
T.W. Kensler, N. Wakabayashi, S. Biswal, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007)
CAS
Article
PubMed
Google Scholar
M. Kobayashi, L. Li, N. Iwamoto, Y. Nakajima-Takagi, H. Kaneko, Y. Nakayama, M. Eguchi, Y. Wada, Y. Kumagai, M. Yamamoto, The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29, 493–502 (2009)
CAS
Article
PubMed
Google Scholar
M. Kobayashi, M. Yamamoto, Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385–394 (2005)
CAS
Article
PubMed
Google Scholar
M. Kobayashi, M. Yamamoto, Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46, 113–140 (2006)
CAS
Article
PubMed
Google Scholar
C.Y. Tsai, C.C. Wang, T.Y. Lai, H.N. Tsu, C.H. Wang, H.Y. Liang, W.W. Kuo, Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int. J. Cardiol. 168, 1286–1297 (2013)
Article
PubMed
Google Scholar
S.G. Fonseca, M. Burcin, J. Gromada, F. Urano, Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr. Opin. Pharmacol. 9, 763–770 (2009)
CAS
Article
PubMed
PubMed Central
Google Scholar
L. Xu, G.A. Spinas, M. Niessen, ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Horm. Metab. Res. 42, 643–651 (2010)
CAS
Article
PubMed
Google Scholar
C.J. van der Kallen, M.M. van Greevenbroek, C.D. Stehouwer, C.G. Schalkwijk, Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis Int. J. Program. Cell Death 14, 1424–1434 (2009)
CAS
Article
Google Scholar
S. Alhusaini, K. McGee, B. Schisano, A. Harte, P. McTernan, S. Kumar, G. Tripathi, Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates this stress. Biochem. Biophys. Res. Commun. 397, 472–478 (2010)
CAS
Article
PubMed
Google Scholar
C.S. McAlpine, A.J. Bowes, G.H. Werstuck, Diabetes, hyperglycemia and accelerated atherosclerosis: evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc. Hematol. Disord. 10, 151–157 (2010)
CAS
Article
Google Scholar
W. Bakker, E.C. Eringa, P. Sipkema, V.W. van Hinsbergh, Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 335, 165–189 (2009)
CAS
Article
PubMed
Google Scholar
J. Lee, S.W. Hong, S.E. Park, E.J. Rhee, C.Y. Park, K.W. Oh, S.W. Park, W.Y. Lee, Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism. Cell Stress Chaperones 19, 649–656 (2014)
CAS
Article
PubMed
PubMed Central
Google Scholar
C.W. Younce, M.A. Burmeister, J.E. Ayala, Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am. J. Physiol. Cell Physiol. 304, C508–C518 (2013)
CAS
Article
PubMed
Google Scholar
B. Yusta, L.L. Baggio, J.L. Estall, J.A. Koehler, D.P. Holland, H. Li, D. Pipeleers, Z. Ling, D.J. Drucker, GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4, 391–406 (2006)
CAS
Article
PubMed
Google Scholar
S. Tsunekawa, N. Yamamoto, K. Tsukamoto, Y. Itoh, Y. Kaneko, T. Kimura, Y. Ariyoshi, Y. Miura, Y. Oiso, I. Niki, Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J. Endocrinol. 193, 65–74 (2007)
CAS
Article
PubMed
Google Scholar
M. Shimoda, Y. Kanda, S. Hamamoto, K. Tawaramoto, M. Hashiramoto, M. Matsuki, K. Kaku, The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 54, 1098–1108 (2011)
CAS
Article
PubMed
PubMed Central
Google Scholar
B. Basha, S.M. Samuel, C.R. Triggle, H. Ding, Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res. 2012, 481840 (2012)
Article
PubMed
PubMed Central
Google Scholar
Z. Zhang, J. Li, X. Jiang, L. Yang, L. Lei, D. Cai, H. Zhang, H. Chen, GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins. Mol. Med. Rep. 10, 683–688 (2014)
CAS
PubMed
Google Scholar
Y.H. Cheong, M.K. Kim, M.H. Son, B.K. Kaang, Glucose exposure pattern determines glucagon-like peptide 1 receptor expression and signaling through endoplasmic reticulum stress in rat insulinoma cells. Biochem. Biophys. Res. Commun. 414, 220–225 (2011)
CAS
Article
PubMed
Google Scholar
Q.R. Pan, W.H. Li, H. Wang, Q. Sun, X.H. Xiao, B. Brock, O. Schmitz, Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell. Horm. Metab. Res. 41, 799–804 (2009)
CAS
Article
PubMed
Google Scholar
I. Valverde, G.S. Wang, K. Burghardt, L.M. Kauri, A. Redondo, A. Acitores, M.L. Villanueva-Penacarrillo, P. Courtois, A. Sener, J. Cancelas, W.J. Malaisse, F.W. Scott, Bioactive GLP-1 in gut, receptor expression in pancreas, and insulin response to GLP-1 in diabetes-prone rats. Endocrine 23, 77–84 (2004)
CAS
Article
PubMed
Google Scholar