The pivotal role of high glucose-induced overexpression of PKCβ in the appearance of glucagon-like peptide-1 resistance in endothelial cells


Recently, it has been demonstrated that Glucagon-like peptide-1 (GLP-1) has a protective effect on endothelial cells. Our hypothesis is that this GLP-1 protective effect is partly lost when the cells are exposed to sustained high glucose concentrations. Human umbilical vein endothelial cells (HUVECs) were cultured for 21 days in normal glucose (5 mmol/L, NG) or high glucose (25 mmol/L glucose, HG). GLP-1 (7-37) and Ruboxistaurin were added at 50 and 500 nM, respectively, alone or in combination, 1 h before cell harvesting. Analysis of GLP-1 receptor protein levels, as well as of the gene expression of different ER stress-related genes, proliferation markers, antioxidant cell response-related genes, and PKA subunits, was performed. ROS production was also measured in HUVECs exposed to mentioned treatments. GLP-1 receptor expression was reduced in HUVECs exposed to chronic high glucose concentrations but was partially restored by a chemical PKCβ-specific inhibitor. GLP-1, added as an acute treatment in endothelial cells, had the capacity to induce the expression of Nrf2-detoxifying enzyme targets, to increase transcription levels of scavenger genes, to attenuate the expression of high glucose-induced PKA subunits, ER stress and also the apoptotic phenotype of HUVECs; these effects occured only when high glucose-induced PKCβ overexpression was reduced by Ruboxistaurin. In a similar manner, ROS production induced by high glucose was reduced by GLP-1 in the presence of PKCβ inhibitor. This study suggests that an increase in PKCβ, induced by high glucose, could have a role in endothelial GLP-1 resistance, reducing GLP-1 receptor levels and disrupting the GLP-1 canonical pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    S. Herzberg-Schafer, M. Heni, N. Stefan, H.U. Haring, A. Fritsche, Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes. Metab. 14(Suppl 3), 85–90 (2012)

    Article  PubMed  Google Scholar 

  2. 2.

    M. Nauck, F. Stockmann, R. Ebert, W. Creutzfeldt, Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986)

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    D.J. Drucker, The biology of incretin hormones. Cell Metab. 3, 153–165 (2006)

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Y. Ishibashi, T. Matsui, M. Takeuchi, S. Yamagishi, Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 391, 1405–1408 (2010)

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    L. Ding, J. Zhang, Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 33, 75–81 (2012)

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    G.G. Holz, Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5–13 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    K. Ban, M.H. Noyan-Ashraf, J. Hoefer, S.S. Bolz, D.J. Drucker, M. Husain, Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008)

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    T. Nystrom, M.K. Gutniak, Q. Zhang, F. Zhang, J.J. Holst, B. Ahren, A. Sjoholm, Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab. 287, E1209–E1215 (2004)

    Article  PubMed  Google Scholar 

  9. 9.

    A. Ceriello, K. Esposito, R. Testa, A.R. Bonfigli, M. Marra, D. Giugliano, The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care 34, 697–702 (2011)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    H. Oeseburg, R.A. de Boer, H. Buikema, P. van der Harst, W.H. van Gilst, H.H. Sillje, Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler. Thromb. Vasc. Biol. 30, 1407–1414 (2010)

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    A. Pecorelli, V. Bocci, A. Acquaviva, G. Belmonte, C. Gardi, F. Virgili, L. Ciccoli, G. Valacchi, NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 267, 30–40 (2013)

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    J. Liu, Y. Liu, L. Chen, Y. Wang, J. Li, Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. J. Diabetes Res. 2013, 630537 (2013)

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    B. Schisano, A.L. Harte, K. Lois, P. Saravanan, N. Al-Daghri, O. Al-Attas, L.B. Knudsen, P.G. McTernan, A. Ceriello, G. Tripathi, GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul. Pept. 174, 46–52 (2012)

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    L. Zhao, H. Guo, H. Chen, R.B. Petersen, L. Zheng, A. Peng, K. Huang, Effect of Liraglutide on endoplasmic reticulum stress in diabetes. Biochem. Biophys. Res. Commun. 441, 133–138 (2013)

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    A. Mima, J. Hiraoka-Yamomoto, Q. Li, M. Kitada, C. Li, P. Geraldes, M. Matsumoto, K. Mizutani, K. Park, C. Cahill, S. Nishikawa, C. Rask-Madsen, G.L. King, Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes 61, 2967–2979 (2012)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    T.P. Solomon, S.H. Knudsen, K. Karstoft, K. Winding, J.J. Holst, B.K. Pedersen, Examining the effects of hyperglycemia on pancreatic endocrine function in humans: evidence for in vivo glucotoxicity. J. Clin. Endocrinol. Metab. 97, 4682–4691 (2012)

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    C.J. Green, T.I. Henriksen, B.K. Pedersen, T.P. Solomon, Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One 7, e44284 (2012)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    G. Xu, H. Kaneto, D.R. Laybutt, V.F. Duvivier-Kali, N. Trivedi, K. Suzuma, G.L. King, G.C. Weir, S. Bonner-Weir, Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56, 1551–1558 (2007)

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013)

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    A.C. Brewer, T.V. Murray, M. Arno, M. Zhang, N.P. Anilkumar, G.E. Mann, A.M. Shah, Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic. Biol. Med. 51, 205–215 (2011)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    D.J. Drucker, Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161–171 (2003)

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    T. Forst, M.M. Weber, A. Pfutzner, Cardiovascular benefits of GLP-1-based therapies in patients with diabetes mellitus type 2: effects on endothelial and vascular dysfunction beyond glycemic control. Exp. Diabetes Res. 2012, 635472 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    K. Ban, S. Hui, D.J. Drucker, M. Husain, Cardiovascular consequences of drugs used for the treatment of diabetes: potential promise of incretin-based therapies. J. Am. Soc. Hypertens. 3, 245–259 (2009)

    Article  PubMed  Google Scholar 

  24. 24.

    D. Accili, K.C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004)

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    K. Soberg, T. Jahnsen, T. Rognes, B.S. Skalhegg, J.K. Laerdahl, Evolutionary paths of the cAMP-dependent protein kinase (PKA) catalytic subunits. PLoS One 8, e60935 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    S. Rajan, L.M. Dickson, E. Mathew, C.M. Orr, J.H. Ellenbroek, L.H. Philipson, B. Wicksteed, Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic beta-cells via protein kinase A. Mol. Metab. 4, 265–276 (2015)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    T.W. Kensler, N. Wakabayashi, S. Biswal, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007)

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    M. Kobayashi, L. Li, N. Iwamoto, Y. Nakajima-Takagi, H. Kaneko, Y. Nakayama, M. Eguchi, Y. Wada, Y. Kumagai, M. Yamamoto, The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29, 493–502 (2009)

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    M. Kobayashi, M. Yamamoto, Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385–394 (2005)

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    M. Kobayashi, M. Yamamoto, Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46, 113–140 (2006)

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    C.Y. Tsai, C.C. Wang, T.Y. Lai, H.N. Tsu, C.H. Wang, H.Y. Liang, W.W. Kuo, Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. Int. J. Cardiol. 168, 1286–1297 (2013)

    Article  PubMed  Google Scholar 

  32. 32.

    S.G. Fonseca, M. Burcin, J. Gromada, F. Urano, Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr. Opin. Pharmacol. 9, 763–770 (2009)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    L. Xu, G.A. Spinas, M. Niessen, ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Horm. Metab. Res. 42, 643–651 (2010)

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    C.J. van der Kallen, M.M. van Greevenbroek, C.D. Stehouwer, C.G. Schalkwijk, Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis Int. J. Program. Cell Death 14, 1424–1434 (2009)

    CAS  Article  Google Scholar 

  35. 35.

    S. Alhusaini, K. McGee, B. Schisano, A. Harte, P. McTernan, S. Kumar, G. Tripathi, Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates this stress. Biochem. Biophys. Res. Commun. 397, 472–478 (2010)

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    C.S. McAlpine, A.J. Bowes, G.H. Werstuck, Diabetes, hyperglycemia and accelerated atherosclerosis: evidence supporting a role for endoplasmic reticulum (ER) stress signaling. Cardiovasc. Hematol. Disord. 10, 151–157 (2010)

    CAS  Article  Google Scholar 

  37. 37.

    W. Bakker, E.C. Eringa, P. Sipkema, V.W. van Hinsbergh, Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 335, 165–189 (2009)

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    J. Lee, S.W. Hong, S.E. Park, E.J. Rhee, C.Y. Park, K.W. Oh, S.W. Park, W.Y. Lee, Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism. Cell Stress Chaperones 19, 649–656 (2014)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    C.W. Younce, M.A. Burmeister, J.E. Ayala, Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am. J. Physiol. Cell Physiol. 304, C508–C518 (2013)

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    B. Yusta, L.L. Baggio, J.L. Estall, J.A. Koehler, D.P. Holland, H. Li, D. Pipeleers, Z. Ling, D.J. Drucker, GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4, 391–406 (2006)

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    S. Tsunekawa, N. Yamamoto, K. Tsukamoto, Y. Itoh, Y. Kaneko, T. Kimura, Y. Ariyoshi, Y. Miura, Y. Oiso, I. Niki, Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J. Endocrinol. 193, 65–74 (2007)

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    M. Shimoda, Y. Kanda, S. Hamamoto, K. Tawaramoto, M. Hashiramoto, M. Matsuki, K. Kaku, The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 54, 1098–1108 (2011)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    B. Basha, S.M. Samuel, C.R. Triggle, H. Ding, Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res. 2012, 481840 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Z. Zhang, J. Li, X. Jiang, L. Yang, L. Lei, D. Cai, H. Zhang, H. Chen, GLP-1 ameliorates the proliferation activity of INS-1 cells inhibited by intermittent high glucose concentrations through the regulation of cyclins. Mol. Med. Rep. 10, 683–688 (2014)

    CAS  PubMed  Google Scholar 

  45. 45.

    Y.H. Cheong, M.K. Kim, M.H. Son, B.K. Kaang, Glucose exposure pattern determines glucagon-like peptide 1 receptor expression and signaling through endoplasmic reticulum stress in rat insulinoma cells. Biochem. Biophys. Res. Commun. 414, 220–225 (2011)

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Q.R. Pan, W.H. Li, H. Wang, Q. Sun, X.H. Xiao, B. Brock, O. Schmitz, Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell. Horm. Metab. Res. 41, 799–804 (2009)

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    I. Valverde, G.S. Wang, K. Burghardt, L.M. Kauri, A. Redondo, A. Acitores, M.L. Villanueva-Penacarrillo, P. Courtois, A. Sener, J. Cancelas, W.J. Malaisse, F.W. Scott, Bioactive GLP-1 in gut, receptor expression in pancreas, and insulin response to GLP-1 in diabetes-prone rats. Endocrine 23, 77–84 (2004)

    CAS  Article  PubMed  Google Scholar 

Download references


We thank Dr. Díaz for providing us with HUVECs, and Kimberly Katte of the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) for assisting with manuscript editing.


This study was supported by project PI10/01256 within the framework of the Plan Nacional de I+D+I and co-funded by the Carlos III Health Institute (ISCIII)-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER), Spain.

Author information



Corresponding authors

Correspondence to Gemma Pujadas or Antonio Ceriello.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 80 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pujadas, G., De Nigris, V., La Sala, L. et al. The pivotal role of high glucose-induced overexpression of PKCβ in the appearance of glucagon-like peptide-1 resistance in endothelial cells. Endocrine 54, 396–410 (2016).

Download citation


  • Diabetes
  • High glucose
  • GLP-1
  • PKCβ
  • Endothelial dysfunction
  • Endothelial resistance