, Volume 52, Issue 1, pp 30–38 | Cite as

T regulatory (Treg) and T helper 17 (Th17) lymphocytes in thyroid autoimmunity

  • Roberto González-Amaro
  • Mónica Marazuela
Mini Review


Different immune cell subsets have a relevant role in the pathogenesis of and tissue damage seen in autoimmune thyroid diseases (AITD), including T regulatory (Treg) lymphocytes and T helper (Th) 17 cells. There are several types of CD4+ Treg cells (Foxp3+, CD69+, Tr1), which are able to prevent the appearance of autoimmune diseases, down regulating the immune response and the inflammatory phenomenon. However, despite their presence in peripheral blood and thyroid tissue from patients with AITD, these cells are apparently unable to put down the autoimmune process. Moreover, many reports indicate the involvement of Th17 cells in chronic inflammatory diseases, including AITD. Nevertheless, it is now evident that these lymphocytes show a remarkable plasticity, giving rise to anti-inflammatory (including Treg lymphocytes) and pro-inflammatory cell subtypes. Nowadays, both Treg and Th17 cells must be considered as key elements in the pathogenesis of AITD as well as plausible potential targets for the next generation of therapeutic options of this condition.


Immune regulation T cells Autoimmune thyroid disease Cytokines 





Monoclonal antibodies


T follicular helper


T regulatory


T helper


Autoimmune thyroid diseases










Transforming growth factor-β


Graves’ ophthalmopathy



This work was partially supported by the following grants: 95395 from the Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT-European Union, México, to R.G.-A.); PI13-01414 and PIE-0041 BIOIMID from the Fondo de Investigación Sanitaria—Instituto de Salud Carlos III (to M.M.), and S2011/BMD-2328 TIRONET from the Comunidad de Madrid (to M.M.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A. Antonelli, S.M. Ferrari, A. Corrado, A. Di Domenicantonio, P. Fallahi, Autoimmune thyroid disorders. Autoimmun. Rev. 14, 174–180 (2015)CrossRefPubMedGoogle Scholar
  2. 2.
    S.A. Morshed, R. Latif, T.F. Davies, Delineating the autoimmune mechanisms in Graves’ disease. Immunol. Res. 54, 191–203 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    H. Li, T. Wang, The autoimmunity in Graves’ disease. Front. Biosci. 18, 782–787 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, T.J. Smith, Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest. Ophthalmol. Vis. Sci. 55, 1735–1748 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    L. Bartalena, V. Fatourechi, Extrathyroidal manifestations of Graves’ disease: a 2014 update. J. Endocrinol. Invest. 37, 691–700 (2014)CrossRefPubMedGoogle Scholar
  6. 6.
    L.A. Zúñiga, R. Jain, C. Haines, D.J. Cua, Th17 cell development: from the cradle to the grave. Immunol. Rev. 252, 78–88 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    C.R. Grant, R. Liberla, G. Mieli-Vergani, D. Vergani, M.S. Longhi, Regulatory T-cells in autoinmune diseases: challenges, controversies and-yet-unanswered questions. Autoimmun. Rev. 14, 105–116 (2015)CrossRefPubMedGoogle Scholar
  8. 8.
    A.L. Croxford, P. Kulig, B. Becher, IL-12 and IL-23 in health and disease. Cytokine Growth Factor Rev. 25, 415–421 (2014)CrossRefPubMedGoogle Scholar
  9. 9.
    R.K. Gershon, K. Kondo, Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723–737 (1970)PubMedPubMedCentralGoogle Scholar
  10. 10.
    S. Hori, T. Takahashi, S. Sakaguchi, Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv. Immunol. 81, 331–371 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Miyara, Y. Ito, S. Sakaguchi, Treg-cell therapies for autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 10, 543–551 (2014)CrossRefPubMedGoogle Scholar
  12. 12.
    S. Sakaguchi, D.A. Vignali, A.Y. Rudensky, R.E. Niec, H. Waldmann, The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461–467 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    S. Sakaguchi, K. Wing, Y. Onishi, P. Prieto-Martin, T. Yamaguchi, Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21, 1105–1111 (2009)CrossRefPubMedGoogle Scholar
  14. 14.
    Y. Han, Q. Guo, M. Zhang, Z. Chen, X. Cao, CD69+ CD4+ CD25− T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-β1. J. Immunol. 182, 111–120 (2009)CrossRefPubMedGoogle Scholar
  15. 15.
    M. Vitales-Noyola, L. Doníz-Padilla, C. Álvarez-Quiroga, A. Monsiváis-Urenda, H. Portillo-Salazar, R. González-Amaro, Quantitative and functional analysis of CD69(+) NKG2D(+) T regulatory cells in healthy subjects. Hum. Immunol. 76, 511–518 (2015)CrossRefPubMedGoogle Scholar
  16. 16.
    M.G. Roncarolo, S. Gregori, R. Bacchetta, M. Battaglia, Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr. Top. Microbiol. Immunol. 380, 39–68 (2014)PubMedGoogle Scholar
  17. 17.
    M. Marazuela, M.A. García-López, N. Figueroa-Vega, H. de la Fuente, B. Alvarado-Sánchez, A. Monsiváis-Urenda, F. Sánchez-Madrid, R. González-Amaro, Regulatory T cells in human autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 91, 3639–3646 (2006)CrossRefPubMedGoogle Scholar
  18. 18.
    P. Verginis, H.S. Li, G. Carayanniotis, Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+ CD25+ T cells. J. Immunol. 174, 7433–7439 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    E. Gambineri, T.R. Torgerson, H.D. Ochs, Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of Foxp3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003)CrossRefPubMedGoogle Scholar
  20. 20.
    D.J. Kasprowicz, P.S. Smallwood, A.J. Tyznik, S.F. Ziegler, Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J. Immunol. 171, 1216–1223 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    C. Mao, S. Wang, Y. Xiao, J. Xu, Q. Jiang, M. Jin, X. Jiang, H. Guo, G. Ning, Y. Zhang, Impairment of regulatory capacity of CD4+ CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves´ disease. J. Immunol. 186, 4734–4743 (2011)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Nakahara, Y. Nagayama, T. Ichikawa, L. Yu, G.S. Eisenbarth, N. Abiru, The effect of regulatory T-cell depletion on the spectrum of organ-specific autoimmune diseases in nonobese diabetic mice at different ages. Autoimmunity 44, 504–510 (2011)CrossRefPubMedGoogle Scholar
  23. 23.
    D. Pan, Y.H. Shin, G. Gopalakrishnan, J. Hennessey, L.J. De Groot, Regulatory T cells in Graves’ disease. Clin. Endocrinol. 71, 587–593 (2009)CrossRefGoogle Scholar
  24. 24.
    P. Verginis, H.S. Li, G. Carayanniotis, Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+ CD25+ T cells. J. Immunol. 174, 7433–7439 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    A.B. Glick, A. Wodzinski, P. Fu, A.D. Levine, D.N. Wald, Impairment of regulatory T-cell function in autoimmune thyroid disease. Thyroid 23, 871–878 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    A. Bossowski, M. Moniuszko, M. Dabrowska, B. Sawicka, M. Rusak, M. Jeznach, J. Wójtowicz, A. Bodzenta-Lukaszyk, A. Bossowska, Lower proportions of CD4+ CD25high and CD4+ Foxp3+, but not CD4+ CD25+ CD127lowFoxp3+ T cell levels in children with autoimmune thyroid diseases. Autoimmune 46, 222–230 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Rodríguez-Muñoz, M. Vitales-Noyola, A. Ramos-Levi, A. Serrano-Somavilla, R. González-Amaro, M. Marazuela, Levels of regulatory T cells CD69+ NKG2D+ IL-10+ are increased in patients with autoimmune thyroid disorders. Endocrine (2015). doi: 10.1007/s12020-015-0662-2 PubMedGoogle Scholar
  28. 28.
    R. Basu, R.D. Hatton, C.T. Weaver, The Th17 family: flexibility follows function. Immunol. Rev. 252, 89–203 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    F. Annunziato, L. Cosmi, F. Liotta, E. Maggi, S. Romagnani, Human T helper type 1 dichotomy: origin, phenotype and biological activities. Immunology 144, 343–351 (2014)Google Scholar
  30. 30.
    Y.K. Lee, R. Mukasa, R.D. Hatton, C.T. Weaver, Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol. 21, 274–280 (2009)CrossRefPubMedGoogle Scholar
  31. 31.
    G. Beriou, C.M. Costantino, C.W. Ashley, L. Yang, V.K. Kuchroo, C. Baecher-Allan, D.A. Hafler, IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113, 4240–4249 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    H.J. Koenen, R.L. Smeets, P.M. Vink, E. van Rijssen, A.M. Boots, I. Joosten, Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008)CrossRefPubMedGoogle Scholar
  33. 33.
    H.J. Bovenschen, P.C. van de Kerkhof, P.E. van Erp, R. Woestenenk, I. Joosten, H.J. Koenen, Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Invest. Dermatol. 131, 1853–1860 (2011)CrossRefPubMedGoogle Scholar
  34. 34.
    S.A. McClymont, A.L. Putnam, M.R. Lee, J.H. Esensten, W. Liu, M.A. Hulme, U. Hoffmüller, U. Baron, S. Olek, J.A. Bluestone, T.M. Brusko, Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    P. Pandiyan, J. Zhu, Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine (2015). doi: 10.1016/j.cyto.2015.07.005 PubMedGoogle Scholar
  36. 36.
    R. Du, H. Zhao, F. Yan, H. Li, IL-17+ Foxp3+ T cells: an intermediate differentiation stage between Th17 cells and regulatory T cells. J. Leukoc. Biol. 96, 39–48 (2014)CrossRefPubMedGoogle Scholar
  37. 37.
    L. Shi, M. Bi, R. Yang, J. Zhou, S. Zhao, C. Fan, Z. Shan, Y. Li, W. Teng, Defective expression of regulatory B cells in iodine-induced autoimmune thyroiditis in non-obese diabetic H-2(h4) mice. J. Endocrinol. Invest. 37, 43–50 (2014)CrossRefPubMedGoogle Scholar
  38. 38.
    T.R. Mosmann, H. Cherwinski, M.W. Bond, M.A. Giedlin, R.L. Coffman, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokines activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986)PubMedGoogle Scholar
  39. 39.
    N. Schmitt, H. Ueno, Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34, 130–136 (2015)CrossRefPubMedGoogle Scholar
  40. 40.
    S. Aggarwal, N. Ghilardi, M.H. Xie, F.J. de Sauvage, A.L. Gurney, Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003)CrossRefPubMedGoogle Scholar
  41. 41.
    E. Rouvier, M.F. Luciani, M.G. Mattei, F. Denizot, P. Golstein, CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993)PubMedGoogle Scholar
  42. 42.
    Z. Yao, S.L. Painter, W.C. Fanslow, D. Ulrich, B.M. Macduff, M.K. Spriggs, R.J. Armitage, Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155, 5483–5486 (1995)PubMedGoogle Scholar
  43. 43.
    X. Song, H. Gao, Y. Qian, Th17 differentiation and their pro-inflammation function. Adv. Exp. Med. Biol. 841, 99–151 (2014)CrossRefPubMedGoogle Scholar
  44. 44.
    C.L. Langrish, Y. Chen, W.M. Blumenschein, J. Mattson, B. Basham, J.D. Sedgwick, T. McClanahan, R.A. Kastelein, D.J. Cua, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    K. Ghoreschi, A. Laurence, X.P. Yang, C.M. Tato, M.J. McGeachy, J. Konkel, H.L. Ramos, L. Wei, T. Davidson, N. Bouladoux, J. Grainger, Q. Chen, Y. Kanno, W.T. Watford, H.W. Sun, G. Eberl, E. Schevach, Y. Belkaid, D.J. Cua, W. Chen, O´Shea, J.J.: Generation of pathogenic Th17 cells in the absence of TGF-β signaling. Nature 467, 967–971 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    K. Ghoreschi, A. Laurence, X.P. Yang, K. Hirahara, J.J. O’Shea, T helper 17 cell heterogeneity and pathogenicity in autoinmune disease. Trends Immunol. 32, 395–401 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Y. Lee, A. Awasthi, N. Yosef, F.J. Quintana, S. Xiao, A. Peters, C. Wu, M. Kleinewietfeld, S. Kunder, D. Hafler, R.A. Sobel, A. Regev, V.K. Kuchroo, Induction and molecular signature of pathogenic Th17 cells. Nat. Immunol. 13, 991–999 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    S.A. Basdeo, B. Moran, D. Cluxton, M. Canavan, J. McCormick, M. Connolly, C. Orr, K.H.G. Mills, D.J. Veale, U. Fearon, J.M. Fletcher, Polyfunctional, pathogenic CD161+ Th17 cells lineage cells are resistant to regulatory T cell-mediated suppression in the context of autoimmunity. J. Immunol. 195, 528–540 (2015)CrossRefPubMedGoogle Scholar
  49. 49.
    R. Ramesh, L. Kozhaya, K. McKevitt, I.M. Djuretic, T.J. Carlson, M.A. Quintero, J.L. McCauley, M.T. Abreu, D. Unutmaz, M.S. Sundrud, Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J. Exp. Med. 211, 89–114 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    T. Feng, A.T. Cao, C.T. Weaver, C.O. Elson, Y. Cong, Interleukin-12 converts Foxp3+ regulatory T cells to interferon-γ-producing Foxp3+ T cells that inhibit colitis. Gastroenterology 140, 2031–2043 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    M.A. Kluger, M.C. Meyer, A. Nosko, B. Goerke, M. Luig, C. Wegscheid, G. Tiegs, R.A. Stahl, U. Panzer, O.M. Steinmetz, RORγt+ Foxp3+ cells are an independent bifunctional regulatory T cell lineage and mediate crescentic GN. J. Am. Soc. Nephrol. (2015). doi: 10.1681/ASN.2014090880 Google Scholar
  52. 52.
    K. Eyerich, S. Eyerich, Th22 cells in allergic disease. Allergo. J. Int. 24, 1–7 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    I. Horie, N. Abiru, Y. Nagayama, G. Kuriya, O. Saitoh, T. Ichikawa, Y. Iwakura, K. Eguchi, T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology 150, 5135–5142 (2009)CrossRefPubMedGoogle Scholar
  54. 54.
    F. Hayashi, M. Watanabe, T. Nanba, N. Inoue, T. Akamizu, Y. Iwatani, Association of the -31C/T functional polymorphism in the interleukine-1β gene with the intractability of Graves’ disease and the proportion of T helper type 17 cells. Clin. Exp. Immunol. 158, 281–286 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    T. Nanba, M. Watanabe, N. Inoue, Y. Iwatani, Increases of the Th1/Th2 cell ratio in severe Hashimoto’s disease and in the proportion of Th17 cells in intractable Graves’ disease. Thyroid 19, 495–501 (2009)CrossRefPubMedGoogle Scholar
  56. 56.
    N. Figueroa-Vega, M.A. Pérez, I. Benedicto, F. Sánchez-Madrid, R. González-Amaro, M. Marazuela, Increased circulating pro-inflammatory cytokine and Th17 lymphocytes in Hashimoto´s thyroiditis. J. Clin. Endocrinol. Metab. 95, 953–962 (2010)CrossRefPubMedGoogle Scholar
  57. 57.
    Q. Qin, P. Liu, L. Liu, R. Wang, N. Yan, J. Yang, X. Wang, M. Pandey, J. Zhang, The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto´s thyroiditis but not in Graves´ disease. Braz. J. Med. Biol. Res. 45, 1202–1208 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    D. Peng, B. Xu, Y. Wang, H. Guo, Y. Jiang, A high frequency of circulating Th22 and Th17 cells in patients with new onset Graves’ disease. PloS One 8, e68446 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    D. Li, W. Cai, R. Gu, Y. Zhang, H. Zhang, K. Tang, P. Xu, F. Katirai, W. Shi, L. Wang, T. Huang, B. Huang, Th17 plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin. Immunol. 149, 411–420 (2013)CrossRefPubMedGoogle Scholar
  60. 60.
    B. Kristensen, L. Hegedüs, H.O. Madsen, T.J. Smith, C.H. Nielsen, Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto´s thyroiditis. Clin. Exp. Immunol. 180, 58–69 (2015)CrossRefPubMedGoogle Scholar
  61. 61.
    H. Guo, D. Peng, Y. Wang, B.C. Xu, J.S. Ni, W. Meng, Y.F. Jiang, A higher frequency of circulating IL-22+ CD4+ T cells in chinese patients with newly diagnosed Hashimoto’s thyroiditis. PloS One 9, e84545 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    H. Xue, X. Yu, L. Ma, S. Song, Y. Li, L. Zhang, T. Yang, H. Liu, The possible role of CD4+ CD25highFoxp3+/CD4+ IL-17A+ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis. Endocrine (2015). doi: 10.1007/s12020-015-0569-y PubMedGoogle Scholar
  63. 63.
    S. Wang, S.E. Baidoo, Y. Liu, C. Zhu, J. Tian, J. Ma, J. Tong, J. Chen, X. Tang, H. Xu, L. Lu, T cell-derived leptin contributes to increased frequency oh T helper type 17 cells in female patients with Hashimoto’s thyroiditis. Clin. Exp. Immunol. 171, 63–68 (2012)CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Y. Liu, X. Tang, J. Tian, C. Zhu, H. Peng, K. Rui, Y. Wang, C. Mao, J. Ma, L. Lu, H. Xu, S. Wang, Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto´s thyroiditis. Int. J. Mol. Sci. 15, 21674–21686 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    S. Leskela, A. Serrano, H. de la Fuente, A. Rodríguez-Muñoz, A. Ramos-Levi, M. Sampedro-Núñez, F. Sánchez-Madrid, R. González-Amaro, M. Marazuela, Graves’ disease is associated with defective expression of the immune regulatory molecule galectin-9 in antigen-presenting dendritic cells. PLoS One 16, e0123938 (2015)CrossRefGoogle Scholar
  66. 66.
    J.R. Li, F.Y. Hong, J.Y. Zeng, G.L. Huang, Functional interleukin-17 receptor A are present in the thyroid gland in intractable Graves’ disease. Cell. Immunol. 281, 85–90 (2013)CrossRefPubMedGoogle Scholar
  67. 67.
    R.H. Song, Z.Y. Yu, Q. Qin, X. Wang, F.S. Muhali, L.F. Shi, W.J. Jiang, L. Xiao, D.F. Li, J.A. Zhang, Different levels of circulating Th22 cell and its related molecules in Graves’ disease and Hashimoto’s thyroiditis. Int. J. Clin. Exp. Pathol. 7, 4024–4031 (2014)PubMedPubMedCentralGoogle Scholar
  68. 68.
    X. Bai, J. Sun, W. Wang, Z. Shan, H. Zheng, Y. Zhao, M. Gong, W. Teng, Increased differentiation of Th22 cells in Hashimoto’s thyroiditis. Endocr. J. 61, 1181–1190 (2014)CrossRefPubMedGoogle Scholar
  69. 69.
    R.M. Ruggeri, P. Minciullo, S. Saitta, S. Giovanazzo, R. Certo, A. Campennì, F. Trimarchi, S. Gangemi, S. Benvenga, Serum interleukin-22 (IL-22) is increased in the early stage of Hashimoto’s thyroiditis compared to non-autoimmune thyroid disease and healthy controls. Hormones 13, 338–344 (2014)PubMedGoogle Scholar
  70. 70.
    R.M. Ruggeri, S. Saitta, M. Cristani, S. Giovanazzo, V. Tigano, F. Trimarchi, S. Benvenga, S. Gangemi, Serum interleukin-23 (IL-23) is increased in Hashimoto´s thyroiditis. Endocr. J. 61, 359–363 (2014)CrossRefPubMedGoogle Scholar
  71. 71.
    L. Guan, X. Wang, S. Meng, L. Shi, W. Jiang, L. Xiao, X. Shi, J. Xu, J. Zhang, Increased IL-21/IL-22R expression and its proinflammatory effects in autoimmune thyroid disease. Cytokine 72, 160–165 (2015)CrossRefPubMedGoogle Scholar
  72. 72.
    S.J. Shan, R.S. Douglas, The pathophysiology of thyroid eye disease. J. Neuroophthalmol. 34, 177–185 (2014)CrossRefPubMedGoogle Scholar
  73. 73.
    H. Wei, M. Guan, Y. Qin, C. Xie, X. Fu, F. Gao, Y. Xue, Circulating levels of miR-146a and IL-17 are significantly correlated with the clinical activity of Graves’ ophthalmopathy. Endocr. J. 61, 1087–1089 (2014)CrossRefPubMedGoogle Scholar
  74. 74.
    S.E. Kim, J.S. Yoon, K.H. Kim, S.Y. Lee, Increased serum interleukin-17 in Graves’ ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol. 250, 1521–1526 (2012)CrossRefPubMedGoogle Scholar
  75. 75.
    A.K. Huber, E.M. Jacobson, K. Jazdzewski, E.S. Concepcion, Y. Tomer, Interleukin (IL)-23 receptor is a major susceptibility gene for Graves’ ophthalmopathy: the IL-23/T-helper 17 axis extends to thyroid autoimmunity. J. Clin. Endocrinol. Metab. 93, 1077–1081 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    L. Zheng, P. Ye, C. Liu, The role of the IL-23/IL-17 axis in the pathogenesis of Graves’ disease. Endocr. J. 60, 591–597 (2013)CrossRefPubMedGoogle Scholar
  77. 77.
    F. Rajaii, A.N. McCoy, T.J. Smith, Cytokines are both villains and potential therapeutic targets in thyroid-associated ophthalmopathy: From bench to bedside. Expert. Rev. Ophthalmol. 9, 227–234 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    D. Cao, R. van Vollenhoven, L. Klareskog, C. Trollmo, V. Malmstrom, CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther. 6, R335–R346 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    M.R. Ehrenstein, J.G. Evans, A. Singh, S. Moore, G. Warnes, D.A. Isenberg, C. Mauri, Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J. Exp. Med. 200, 277–285 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    J. Haas, A. Hug, A. Viehover, B. Fritzsching, C.S. Falk, A. Filser, T. Vetter, L. Milkova, M. Korporal, B. Fritz, B. Storch-Hagenlocher, P.H. Krammer, E. Suri-Payer, B. Wildemann, Reduced suppressive effect of CD4+ CD25 high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol. 35, 3343–3352 (2005)CrossRefPubMedGoogle Scholar
  81. 81.
    U. Feger, C. Luther, S. Poeschel, A. Melms, E. Tolosa, H. Wiendl, Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin. Exp. Immunol. 147, 412–418 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    J. Maul, C. Loddenkemper, P. Mundt, E. Berg, T. Giese, A. Stallmach, M. Zeitz, R. Duchmann, Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 128, 1868–1878 (2005)CrossRefPubMedGoogle Scholar
  83. 83.
    H. Sugiyama, R. Gyulai, E. Toichi, E. Garaczi, S. Shimada, S.R. Stevens, T.S. McCormick, K.D. Cooper, Dysfunctional blood and target tissue CD4+ CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol. 174, 164–173 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    H.J. Bovenschen, P.C. van de Kerkhof, P.E. van Erp, R. Woestenenk, I. Joosten, H.J. Koenen, Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17Aproducing cells and are found in lesional skin. J. Invest. Dermatol. 131, 1853–1860 (2011)CrossRefPubMedGoogle Scholar
  85. 85.
    T.M. Brusko, C.H. Wasserfall, M.J. Clare-Salzler, D.A. Schatz, M.A. Atkinson, Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54, 1407–1414 (2005)CrossRefPubMedGoogle Scholar
  86. 86.
    J.M. Lawson, J. Tremble, C. Dayan, H. Beyan, R.D. Leslie, M. Peakman, T.I. Tree, Increased resistance to CD4+ CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin. Exp. Immunol. 154, 353–359 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    B. Alvarado-Sánchez, B. Hernández-Castro, D. Portales-Pérez, L. Baranda, E. Layseca-Espinosa, C. Abud-Mendoza, A.C. Cubillas-Tejeda, R. González-Amaro, Regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun. 27, 110–118 (2006)CrossRefPubMedGoogle Scholar
  88. 88.
    J.C. Crispin, A. Martínez, J. Alcocer-Varela, Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun. 21, 273–276 (2003)CrossRefPubMedGoogle Scholar
  89. 89.
    A. Alunno, M. Manetti, S. Caterbi, L. Ibba-Manneschi, O. Bistoni, E. Bartoloni, V. Valentini, R. Terenzi, R. Gerli, Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and proinflammatory th17 cells and therapeutic implications. Mediat. Inflamm. (2015). doi: 10.1155/2015/751793 Google Scholar
  90. 90.
    S. Alvermann, C. Hennig, O. Stüve, H. Wiendl, M. Stangel, Immunophenotyping of cerebrospinal fluid cells in multiple sclerosis: in search of biomarkers. JAMA Neurol. 71, 905–912 (2014)CrossRefPubMedGoogle Scholar
  91. 91.
    J.S. Tzartos, M.A. Friese, M.J. Craner, J. Palace, J. Newcombe, M.M. Esiri, L. Fugger, Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    C.S. Catana, I. Berindan Neagoe, V. Cozma, C. Magdas, F. Tabaran, D.L. Dumitrascu, Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 21, 5823–5830 (2015)PubMedPubMedCentralGoogle Scholar
  93. 93.
    J.L. Harden, J.G. Krueger, A.M. Bowcock, The immunogenetics of psoriasis: a comprehensive review. J. Autoimmun. (2015). doi: 10.1016/j.jaut.2015.07.008 PubMedGoogle Scholar
  94. 94.
    L. Reinert-Hartwall, J. Honkanen, H.M. Salo, J.K. Nieminen, K. Luopajärvi, T. Härkönen, R. Veijola, O. Simell, J. Ilonen, A. Peet, V. Tillmann, M. Knip, O. Vaarala, DIABIMMUNE Study Group, Th1/Th17 plasticity is a marker of advanced β cell autoimmunity and impaired glucose tolerance in humans. J. Immunol. 194, 68–75 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    M.S. Maddur, P. Miossec, S.V. Kaveri, J. Bayry, Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol. 181, 8–18 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Immunology, School of MedicineUASLPSan Luis PotosíMexico
  2. 2.Center for Applied Research in Health and BiomedicineUASLPSan Luis PotosíMexico
  3. 3.Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria PrincesaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations