, Volume 53, Issue 1, pp 145–156 | Cite as

Molecular profiles of cancer stem-like cell populations in aggressive thyroid cancers

  • Mariavittoria Dima
  • Valeria Pecce
  • Mauro Biffoni
  • Cira Rosaria Tiziana Di Gioia
  • Giovanni Tallini
  • Marco Biffoni
  • Francesca Rosignolo
  • Antonella Verrienti
  • Marialuisa Sponziello
  • Giuseppe Damante
  • Diego RussoEmail author
  • Cosimo Durante
Original Article


A substantial proportion of patients with advanced thyroid carcinoma fail to respond to or at some point become refractory to conventional therapies. This resistance and the phenomena of thyroid cancer progression and metastasis themselves are thought to be related to tumor-cell sub-populations with stem-like properties. We isolated thyrospheres from four advanced thyroid carcinomas that were resistant to radioiodine therapy and analyzed their molecular profiles. ALDH activity and proteomic profile of main stem cell markers were used to assess stem cell properties. The TaqMan Low Density Array approach was used to evaluate the expression of several genes involved in the EMT process. The phosphorylation status of tyrosine kinase receptors (RTKs) was analyzed to identify potential markers for targeted therapies. We then investigated the effects of the EMT-inhibitor crizotinib on both cell proliferation and phosphorylation status of RTK targets. The cancer stem-like properties of a subset of cells from primary cultures of each tumor were demonstrated. A wide variability among thyrospheres arising from the four thyroid cancers in terms of ALDH activity, stem cell marker expression, and phosphoproteome profiling was present. Dysregulated expression of genes involved in the EMT was observed in all four thyrosphere lines. Treatment with crizotinib was ineffective in cancer stem-like cells, suggesting the presence of a mechanism of resistance in thyrospheres. Collectively, our data indicate that thyroid cancer stem-like populations vary markedly from tumor to tumor and require detailed molecular and biological characterization if they are to be used as the basis of “personalized” treatment of aggressive disease.


Metastatic thyroid cancer Epithelial-mesenchymal transition Cancer stem cells Drug resistance 



This study was funded by grants from the Italian Ministry of Universities and Research (FIRB 2008—number RBFR082XL7_003 to C.D., MIUR/Cofin 2010-2011 to D.R.) and from the Fondazione Umberto Di Mario ONLUS. The manuscript was edited by Marian Everett Kent, BSN.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Supplementary material

12020_2015_739_MOESM1_ESM.tif (989 kb)
Supplementary Figure 1 Identification of mutations by Sanger Sequencing analysis. NRASQ61K (left) and BRAFV600E (right) mutations detected in tissue specimens 2 and 3 and their corresponding primary tumor cell lines, respectively. Analysis has been performed by Sanger Sequencing of exon 3 of NRAS and exon 15 of BRAF (TIFF 988 kb)
12020_2015_739_MOESM2_ESM.tif (1.9 mb)
Supplementary Figure 2 EMT-related gene expression level in thyrospheres and primary cell populations from all 4 tumors. Columns (error bars) represent means (± SD) of thyrospheres tested with TLDA. Dashed-line represents primary cells (calibrator, set at 1). Differences between thyrosphere expression levels and those of corresponding primary cells were assessed with the Student t-test (* p<0.05; ** p<0.01; *** p<0.001) (TIFF 1929 kb)
12020_2015_739_MOESM3_ESM.tif (1.4 mb)
Supplementary Figure 3 mRNA levels of thyroid-specific genes in thyrospheres and primary cell populations from all 4 tumors. Columns (error bars) represent means (± SD) of 2-ΔCt values in thyrosphere and primary cell populations tested with TLDA. Differences between thyrosphere expression levels and those of corresponding primary cells (calibrator) were assessed with the Student t-test (* p<0.05; ** p<0.01; *** p<0.001) (TIFF 1420 kb)
12020_2015_739_MOESM4_ESM.pdf (64 kb)
Supplementary material 4 (PDF 64 kb)
12020_2015_739_MOESM5_ESM.pdf (116 kb)
Supplementary material 5 (PDF 115 kb)


  1. 1.
    C. Durante, N. Haddy, E. Baudin, S. Leboulleux, D. Hartl, J.P. Travagli, B. Caillou, M. Ricard, J.D. Lumbroso, F. De Vathaire et al., Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91, 2892–2899 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    M. Schlumberger, L. Lacroix, D. Russo, S. Filetti, J.M. Bidart, Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat. Clin. Pract. Endocrinol. Metab. 3, 260–269 (2007)CrossRefPubMedGoogle Scholar
  3. 3.
    F. Arturi, D. Russo, D. Giuffrida, M. Schlumberger, S. Filetti, Sodium–iodide symporter (NIS) gene expression in lymph-node metastases of papillary thyroid carcinomas. Eur. J. Endocrinol. 143, 623–627 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    F. Arturi, D. Russo, J.M. Bidart, D. Scarpelli, M. Schlumberger, S. Filetti, Expression pattern of the pendrin and sodium/iodide symporter (NIS) gene in human thyroid carcinoma cell lines and human thyroid tumors. Eur. J. Endocrinol. 145, 129–135 (2001)CrossRefPubMedGoogle Scholar
  5. 5.
    T. Kogai, G.A. Brent, The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol. Ther. 135, 355–370 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Russo, G. Damante, E. Puxeddu, C. Durante, S. Filetti, Epigenetics of thyroid cancer and novel therapeutic targets. J. Mol. Endocrinol. 46, R73–R81 (2011)CrossRefPubMedGoogle Scholar
  7. 7.
    M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13, 184–199 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    J.P. Thiery, Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002)CrossRefPubMedGoogle Scholar
  9. 9.
    T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)CrossRefPubMedGoogle Scholar
  10. 10.
    T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, T. Kirchner, Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5, 744–749 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    Z. Guo, H. Hardin, R.V. Lloyd, Cancer stem-like cells and thyroid cancer. Endocr. Relat. Cancer 21, T285–T300 (2014)CrossRefPubMedGoogle Scholar
  12. 12.
    H. Hardin, C. Montemayor-Garcia, R.V. Lloyd, Thyroid cancer stem-like cells and epithelial-mesenchymal transition in thyroid cancers. Hum. Pathol. 44, 1707–1713 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    M. Todaro, F. Iovino, V. Eterno, P. Cammareri, G. Gambara, V. Espina, G. Gulotta, F. Dieli, S. Giordano, R. De Maria, G. Stassi, Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 70, 8874–8885 (2010)CrossRefPubMedGoogle Scholar
  14. 14.
    Y. Qin, C. Capaldo, B.M. Gumbiner, I.G. Macara, The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061–1071 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    S.A. Mani, W. Guo, M. Liao, E.N. Eaton, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, R.A. Weinberg, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thyroid American Joint Committee on Cancer 2002: AJCC Cancer Staging Man. pp. 77–87 (2010)Google Scholar
  17. 17.
    M.D. Castellone, A. Verrienti, D. Magendra Rao, M. Sponziello, D. Fabbro, M. Muthu, C. Durante, M. Maranghi, G. Damante, S. Pizzolitto, G. Costante, D. Russo, M. Santoro, S. Filetti, A novel de novo germ-line V292M mutation in the extracellular region of RET in a patient with phaeochromocytoma and medullary thyroid carcinoma: functional characterization. Clin. Endocrinol. 73, 529–534 (2010)Google Scholar
  18. 18.
    F. Rosignolo, V. Maggisano, M. Sponziello, M. Celano, C.R. Di Gioia, M. D’Agostino, L. Giacomelli, A. Verrienti, M. Dima, V. Pecce, C. Durante, Reduced expression of THRβ in papillary thyroid carcinomas: relationship with BRAF mutation, aggressiveness and miR expression. J. Endocrinol. Invest. (2015). doi: 10.1007/s40618-015-0309-4 PubMedGoogle Scholar
  19. 19.
    L. Khandrika, F.J. Kim, A. Campagna, S. Koul, R.B. Meacham, H.K. Koul, Primary culture and characterization of human renal inner medullary collecting duct epithelial cells. J. Urol. 179, 2057–2063 (2008)CrossRefPubMedGoogle Scholar
  20. 20.
    A. Hague, C. Paraskeva, The intestinal epithelial cell, in Epithelial Cell Culture, ed. by A. Harris (Cambridge University Press, New York, 1996), pp. 25–41Google Scholar
  21. 21.
    L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De Maria, Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Todaro, M.P. Alea, A.B. Di Stefano, P. Cammareri, L. Vermeulen, F. Iovino, C. Tripodo, A. Russo, G. Gulotta, J.P. Medema, G. Stassi, Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1, 389–402 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Sponziello, E. Lavarone, E. Pegolo, C. Di Loreto, C. Puppin, M. Russo, R. Bruno, S. Filetti, C. Durante, D. Russo, A. Di Cristofano, G. Damante, Molecular differences between human thyroid follicular adenoma and carcinoma revealed by analysis of a murine model of thyroid cancer. Endocrinology. 154, 3043–3053 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Y. Zhou, C. Zhao, S. Gery, G.D. Braunstein, R. Okamoto, R. Alvarez, S.A. Miles, N.B. Doan, J.W. Said, J. Gu, H. Phillip Koeffler, Off-target effects of c-MET inhibitors on thyroid cancer cells. Mol. Cancer Ther. 13, 134–143 (2014)CrossRefPubMedGoogle Scholar
  25. 25.
    M.M. Nociari, A. Shalev, P. Benias, C. Russo, A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J. Immunol. Methods 213, 157–167 (1998)CrossRefPubMedGoogle Scholar
  26. 26.
    E.H. Huang, M.J. Hynes, T. Zhang, C. Ginestier, G. Dontu, H. Appelman, J.Z. Fields, M.S. Wicha, B.M. Boman, Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69, 3382–3389 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    J.L. Dembinski, S. Krauss, Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin. Exp. Metastasis 26, 611–623 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    C. van den Hoogen, G. van der Horst, H. Cheung, J.T. Buijs, J.M. Lippitt, N. Guzmán-Ramírez, F.C. Hamdy, C.L. Eaton, G.N. Thalmann, M.G. Cecchini, R.C.M. Pelger, G. van der Pluijm, High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 70, 5163–5173 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    L.P. Fernández, A. López-Márquez, P. Santisteban, Thyroid transcription factors in development, differentiation and disease. Nat. Rev. Endocrinol. 11, 29–42 (2015)CrossRefPubMedGoogle Scholar
  30. 30.
    H.R. Kim, W.S. Kim, Y.J. Choi, C.M. Choi, J.K. Rho, J.C. Lee, Epithelial-mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4-ALK translocation. Mol. Oncol. 7, 1093–1102 (2013)CrossRefPubMedGoogle Scholar
  31. 31.
    S. Thomson, F. Petti, I. Sujka-Kwok, P. Mercado, J. Bean, M. Monaghan, S.L. Seymour, G.M. Argast, D.M. Epstein, J.D. Haley, A systems view of epithelial–mesenchymal transition signaling states. Clin. Exp. Metastasis 28, 137–155 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    C. Holz, F. Niehr, M. Boyko, T. Hristozova, L. Distel, V. Budach, I. Tinhofer, Epithelial-mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiother. Oncol. 101, 158–164 (2011)CrossRefPubMedGoogle Scholar
  33. 33.
    I. Cañadas, F. Rojo, Á. Taus, O. Arpí, M. Arumí-Uría, L. Pijuan, S. Menéndez, S. Zazo, M. Dómine, M. Salido, S. Mojal, A. García de Herreros, A. Rovira, J. Albanell, E. Arriola, Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin. Cancer Res. 20, 938–950 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    H.Y. Zou, Q. Li, J.H. Lee, M.E. Arango, S.R. McDonnell, S. Yamazaki, T.B. Koudriakova, G. Alton, J.J. Cui, P.P. Kung, M.D. Nambu, G. Los, S.L. Bender, B. Mroczkowski, J.G. Christensen, An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    Drug Evaluation: Center for Drug Evaluation and Pharmacology Review (S). (2011)
  36. 36.
    U. Hinterseher, A. Wunderlich, S. Roth, A. Ramaswamy, D.K. Bartsch, S. Hauptmann, B.H. Greene, V. Fendrich, S. Hoffmann, Expression of hedgehog signalling pathway in anaplastic thyroid cancer. Endocrine 45, 439–447 (2014)CrossRefPubMedGoogle Scholar
  37. 37.
    S.M. Rodriguez-Pinilla, D. Sarrio, G. Moreno-Bueno, Y. Rodriguez-Gil, M. Martinez, L. Hernandez, D. Hardisson, J.S. Reis-Filho, J. Palacios, Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod. Pathol. 20, 474–481 (2007)CrossRefPubMedGoogle Scholar
  38. 38.
    R.M.R. Gangemi, F. Griffero, D. Marubbi, M. Perera, M.C. Capra, P. Malatesta, G.L. Ravetti, G.L. Zona, A. Daga, G. Corte, SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27, 40–48 (2009)CrossRefPubMedGoogle Scholar
  39. 39.
    H. Ikushima, T. Todo, Y. Ino, M. Takahashi, K. Miyazawa, K. Miyazono, Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5, 504–514 (2009)CrossRefPubMedGoogle Scholar
  40. 40.
    A.C. Laga, C.-Y. Lai, Q. Zhan, S.J. Huang, E.F. Velazquez, Q. Yang, M.-Y. Hsu, G.F. Murphy, Expression of The Embryonic Stem Cell Transcription Factor SOX2 in Human Skin. Am. J. Pathol. 176, 903–913 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    V. Carina, G. Zito, G. Pizzolanti, P. Richiusa, A. Criscimanna, V. Rodolico, L. Tomasello, M. Pitrone, W. Arancio, C. Giordano, Multiple pluripotent stem cell markers in human anaplastic thyroid cancer: the putative upstream role of SOX2. Thyroid 23, 829–837 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    R. Jauch, I. Aksoy, A.P. Hutchins, C.K.L. Ng, X.F. Tian, J. Chen, P. Palasingam, P. Robson, L.W. Stanton, P.R. Kolatkar, Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells 29, 940–951 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    I. Aksoy, R. Jauch, J. Chen, M. Dyla, U. Divakar, G.K. Bogu, R. Teo, C. Keow, L. Ng, W. Herath, S. Lili, P. Hutchins, P. Robson, P.R. Kolatkar, L.W. Stanton, Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J. 32, 938–953 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Y. Chao, Q. Wu, C. Shepard, A. Wells, Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin. Exp. Metastasis 29, 39–50 (2012)CrossRefPubMedGoogle Scholar
  45. 45.
    Y. Chao, Q. Wu, M. Acquafondata, R. Dhir, A. Wells, Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. 5, 19–28 (2012)CrossRefPubMedGoogle Scholar
  46. 46.
    T. Sasaki, J. Koivunen, A. Ogino, M. Yanagita, S. Nikiforow, W. Zheng, C. Lathan, J.P. Marcoux, J. Du, K. Okuda, M. Capelletti, T. Shimamura, D. Ercan, M. Stumpfova, Y. Xiao, S. Weremowicz, M. Butaney, S. Heon, K. Wilner, J.G. Christensen, M.J. Eck, K.-K. Wong, N. Lindeman, N.S. Gray, S.J. Rodig, P. aJänne, A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 71, 6051–6060 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    R. Katayama, A.T. Shaw, T.M. Khan, M. Mino-kenudson, B.J. Solomon, B. Halmos, N.A. Jessop, J.C. Wain, A. Tien, C. Benes, L. Drew, J.C. Saeh, K. Crosby, V. Lecia, A.J. Iafrate, J.A. Engelman, Mechanisms of acquired crizotinib resistance in ALK- rearranged lung cancers. Sci. Transl. Med. 4, 1–25 (2012)CrossRefGoogle Scholar
  48. 48.
    J. Tanizaki, I. Okamoto, T. Okabe, K. Sakai, K. Tanaka, H. Hayashi, H. Kaneda, K. Takezawa, K. Kuwata, H. Yamaguchi, E. Hatashita, K. Nishio, K. Nakagawa, Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer. Clin. Cancer Res. 18, 6219–6226 (2012)CrossRefPubMedGoogle Scholar
  49. 49.
    A. Wunderlich, S. Roth, A. Ramaswamy, B.H. Greene, I.C. Brende, U. Hinterseher, D.K. Bartsch, S. Hoffmann, Combined inhibition of cellular pathways as a future therapeutic option in fatal anaplastic thyroid cancer. Endocrine 42, 637–646 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mariavittoria Dima
    • 1
  • Valeria Pecce
    • 1
  • Mauro Biffoni
    • 2
  • Cira Rosaria Tiziana Di Gioia
    • 3
  • Giovanni Tallini
    • 4
  • Marco Biffoni
    • 5
  • Francesca Rosignolo
    • 1
  • Antonella Verrienti
    • 1
  • Marialuisa Sponziello
    • 1
  • Giuseppe Damante
    • 6
  • Diego Russo
    • 7
    Email author
  • Cosimo Durante
    • 1
  1. 1.Dipartimento di Medicina Interna e Specialità MedicheUniversità di Roma “Sapienza”RomeItaly
  2. 2.Dipartimento di Ematologia, Oncologia e Medicina MolecolareIstituto Superiore di SanitàRomeItaly
  3. 3.Dipartimento di Scienze Radiologiche, Oncologiche ed AnatomopatologicheUniversità di Roma “Sapienza”RomeItaly
  4. 4.Dipartimento di Medicina Specialistica, Diagnostica e SperimentaleUniversità di BolognaBolognaItaly
  5. 5.Dipartimento di Scienze ChirurgicheUniversità di Roma “Sapienza”RomeItaly
  6. 6.Dipartimento di Scienze Mediche e BiologicheUniversità di UdineUdineItaly
  7. 7.Dipartimento di Scienze della SaluteUniversità di Catanzaro “Magna Graecia”CatanzaroItaly

Personalised recommendations