Skip to main content
Log in

Effects of strontium ranelate on markers of cardiovascular risk in postmenopausal osteoporotic women

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Recent pooled analyses have shown that strontium ranelate increases the incidence of venous thromboembolism and non-fatal myocardial infarction, but no explanations were given. The aim of our study was to assess the effects a 12-month treatment with strontium ranelate on hemostasis factors and markers of cardiovascular risk in postmenopausal osteoporotic women. Forty osteoporotic postmenopausal women received orally strontium ranelate 2 g daily, plus calcium and colecalcipherol for 12 months. Forty postmenopausal osteopenic women matched for age, menopausal age, and body mass index served as controls and received orally calcium and colecalcipherol for 12 months. Biochemical cardiovascular risk factors and hemostatic indices were assayed prior to treatment, and after 3, 6, and 12 months of therapy. These indices included fibrinogen, fasting glucose, total serum cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, plasma levels of D-dimer, homocysteine, partial thromboplastin time, and prothrombin time. In addition, we evaluated possible changes in blood pressure and occurrence of venous thromboembolic events. At baseline, no statistically significance was observed between the two groups except for bone mineral density at lumbar spine, femoral neck, and total femur, which was lower in strontium ranelate group. After 12 months of treatment, there was no statistically significant change in cardiovascular risk factors and hemostatic parameters. None of the 40 women developed any clinical venous thromboembolic event. A 12-month treatment with strontium ranelate did not alter hemostasis factors or markers of cardiovascular risk, suggesting that reported increased risk of venous thromboembolism and myocardial infarction with strontium is mediated by other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.J. Meunier, C. Roux, E. Seeman, S. Ortolani, J.E. Badurski, T.D. Spector et al., The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med. 350, 459–468 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. J.Y. Reginster, D. Felsenberg, S. Boonen, A. Diez-Perez, R. Rizzoli, M.L. Brandi et al., Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum. 58, 1687–1695 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. J.Y. Reginster, E. Seeman, M.C. De Vernejoul, S. Adami, J. Compston, C. Phenekos et al., Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) study. J. Clin. Endocrinol. Metab. 90, 2816–2822 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. E. Seeman, J.P. Devogelaer, R. Lorenc, T. Spector, K. Brixen, A. Balogh et al., Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. J. Bone Miner. Res. 23, 433–438 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. J.Y. Reginster, J.M. Kaufman, S. Goemaere, J.P. Devogelaer, C.L. Benhamou, D. Felsenberg et al., Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos. Int. 23, 1115–1122 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. J.M. Kaufman, M. Audran, G. Bianchi, V. Braga, M. Diaz-Curiel, R.M. Francis et al., Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J. Clin. Endocrinol. Metab. 98(2), 592–601 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. C. Cooper, J.Y. Reginster, R. Chapurlat, C. Christiansen, H. Genant, N. Bellamy et al., Efficacy and safety of oral strontium ranelate for the treatment of knee osteoarthritis: rationale and design of randomised, double-blind, placebo-controlled trial. Curr. Med. Res. Opin. 28, 231–239 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. J.P. Pelletier, C. Roubille, J.P. Raynauld, F. Abram, M. Dorais, P. Delorme et al., Disease-modifying effect of strontium ranelate in a subset of patients from the Phase III knee osteoarthritis study SEKOIA using quantitative MRI: reduction in bone marrow lesions protects against cartilage loss. Ann. Rheum. Dis. 74, 422–429 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Protelos. Summary of Product Characteristics. Servier Labs. http://emc.medicines.org.uk/emc/assets/c/html/displaydoc.asp?documentid=15410. Accessed 21 Aug 2006

  10. EMEA Protelos Scientific Discussion (2005), http://www.emea.eu.int/humandocs/PDFs/EPAR/protelos/121604en6.pdf. Accessed 21 Aug 2006

  11. B. Abrahamsen, E.L. Grove, P. Vestergaard, Nationwide registry-based analysis of cardiovascular risk factors and adverse outcomes in patients treated with strontium ranelate. Osteoporos. Int. 25, 757–762 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. M. Halil, M. Cankurtaran, B.B. Yavuz, Z. Ulger, S. Piskinpasa, A. Gedik, I.C. Haznedaroglu, S. Kirazli, S. Ariogul, Short-term hemostatic safety of strontium ranelate treatment in elderly women with osteoporosis. Ann. Pharmacother. 41(1), 41–45 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Z. Ulger, E.I. Gurel, M. Halil, G. Oozen, I. Kalan, N. Seringec et al., Hemorheological changes with strontium ranelate treatment do not seem to be related to its claimed prothrombotic effects. Arch. Gerontol. Geriatr. 54, 218–221 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972)

    CAS  PubMed  Google Scholar 

  15. European Medicines Agency. Assessment report—periodic safety update report (EPAR—Protelos-H-C-560-PSU31). (2014), www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000560/WC500147168.pdf. Accessed 3 Feb 2014

  16. B. Abrahamsen, E.L. Grove, P. Vestergaard, Nationwide registry-based analysis of cardiovascular risk factors and adverse outcomes in patients treated with strontium ranelate. Osteoporos. Int. 25(2), 757–762 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. European Medicines Agency European Medicines Agency recommends that Protelos/Osseor remain available but with further restrictions (2014), http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Protelos_and_Osseor/human_referral_prac_000025.jsp&mid=WC0b01ac05805c516f. Accessed 24 Feb 2014

  18. S.M. Saadeddin, M.A. Habbab, G.A. Ferns, Markers of inflammation and coronary artery disease. Med. Sci. Monit. 8(1), RA5–RA12 (2002)

    CAS  PubMed  Google Scholar 

  19. W.B. Kannel, P.A. Wolf, W.P. Castelli, D’Aquistino RB Fibrinogen and the risk of cardiovascular disease: the Framingham study. J. Am. Med. Assoc. 258, 1183–1186 (1987)

    Article  CAS  Google Scholar 

  20. Y. Shi, Y. Wu, C. Bian, W. Zhang, J. Yang, G. Xu, Predictive value of plasma fibrinogen levels in patients admitted for acute coronary syndrome. Tex. Heart Inst. J. 37, 178–183 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. W.K. Lagrand, C.A. Visser, W.T. Hermens, H.W. Niessen, F.W. Verheugt, G.J. Wolbink et al., C-reactive protein as a cardiovascular risk factor more than an epiphenomenon? Circulation 100, 96–102 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. P.M. Ridker, High-sensitivity C-reactive protein and cardiovascular risk: rationale for screening and primary prevention. Am. J. Cardiol. 92, 17K–22K (2003)

    Article  CAS  PubMed  Google Scholar 

  23. G. Ndrepepa, S. Braun, T. Tada, L. King, S. Cassese, M. Fusaro et al., Comparative prognostic value of C-reactive protein & fibrinogen in patients with coronary artery disease. Indian J. Med. Res. 140, 392–400 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. H. Tanriverdi, H. Evrengul, Y. Enli, O. Kuru, D. Seleci, S. Tanriverdi et al., Effect of homocysteine-induced oxidative stress on endothelial function in coronary slow-flow. Cardiology 107, 313–320 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. M.A. Banos-Gonzalez, E. Angles-Cano, G. Cardoso-Saldana, M.A. Pena-Duque, M.A. Martinez-Rios, B. Valente-Acosta et al., Lipoprotein(a) and homocysteine potentiate the risk of coronary artery disease in male subjects. Circ. J. 76, 1953–1957 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. N. Khandanpour, Y.K. Loke, F.J. Meyer, B. Jennings, M.P. Armon, Homocysteine and peripheral arterial disease: systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 38, 316–322 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. H. Kumakura, H. Kanai, Y. Araki, Y. Hojo, S. Kasama, H. Sumino et al., Differences in brain natriuretic peptide and other factors between Japanese peripheral arterial disease patients with critical limb ischemia and intermittent claudication. J. Atheroscler. Thromb. 20, 798–806 (2013)

    Article  PubMed  Google Scholar 

  28. C. Diehm, J.R. Allenberg, D. Pittrow, M. Mahn, G. Tepohl, R.L. Haberl et al., Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation 120, 2053–2206 (2009)

    Article  PubMed  Google Scholar 

  29. E.J. Dunn, P.J. Grant, Type 2 diabetes: an atherothrombotic syndrome. Curr. Mol. Med. 5, 323–332 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. P. Aukrust, T. Waehre, J.K. Damas, L. Gullestad, N.O. Solum, Inflammatory role of platelets in acute coronary syndromes. Heart 86, 605–606 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. G.K. Hansson, Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. K.K. Koh, R. Mincemoyer, M.N. Bui, G. Csako, F. Pucino, V. Guetta et al., Effects of hormone-replacement therapy on fibrinolysis in postmenopausal women. N. Engl. J. Med. 336, 683–690 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. A. Zampetaki, P. Willeit, L. Tilling, I. Drozdov, M. Prokopi, J.M. JM et al., Prospective study on circulating microRNAs and risk of myocardial infarction. J. Am. Coll. Cardiol. 60, 290–299 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. J.L. Januzzi Jr, ST2 as a cardiovascular risk biomarker: from the bench to the bedside. J. Cardiovasc. Transl. Res. 6, 493–500 (2013)

    Article  PubMed  Google Scholar 

  35. R.K. Upadhyay, Emerging risk biomarkers in cardiovascular diseases and disorders. J Lipids. 2015, 971453 (2015). doi:10.1155/2015/971453

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Atteritano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atteritano, M., Catalano, A., Santoro, D. et al. Effects of strontium ranelate on markers of cardiovascular risk in postmenopausal osteoporotic women. Endocrine 53, 305–312 (2016). https://doi.org/10.1007/s12020-015-0721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0721-8

Keywords

Navigation