Skip to main content

Advertisement

Log in

CLM29 and CLM24, pyrazolopyrimidine derivatives, have antitumoral activity in vitro in anaplastic thyroid cancer, with or without BRAF mutation

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

We have studied the antitumor activity of two new “pyrazolo[3,4-d]pyrimidine” compounds (CLM29 and CLM24) that inhibit several targets (including the RET tyrosine kinase, epidermal growth factor receptor, vascular endothelial growth factor receptor, with an antiangiogenic effect) in primary anaplastic thyroid cancer (ATC) cell cultures and in the human cell line 8305C (undifferentiated thyroid cancer). The antitumor effect of CLM29 and CLM24 was tested in: nine primary ATC cultures obtained from patients at the time of surgery at the concentrations of 1, 5, 10, 30, 50 µM; in 8305C cells at 1, 5, 10, 30, 50 µM for CLM29, and 0.001, 0.01, 0.1, 1, 10, 100 µM for CLM24. CLM29, and CLM24 significantly inhibited the proliferation of 8305C cells. A significant reduction of proliferation with CLM29 and CLM24 in ATC cells (P < 0.01, for both, ANOVA) was shown. CLM29 and CLM24 increased the percentage of apoptotic ATC cells dose-dependently (P < 0.001, ANOVA). The V600E BRAF mutation was observed in three ATCs; the results about the inhibition of proliferation by CLM29 and CLM24, obtained in ATC from tumors with V600E BRAF mutation were similar to those from tumors without BRAF mutation. CLM29 inhibited migration and invasion (P < 0.01) of primary ATC cells, while CLM24 had no significant effect. The antitumor activity of two new “pyrazolo[3,4-d]pyrimidine” compounds (CLM24, CLM29) in vitro in ATC, independent from BRAF mutation, has been shown, allowing a future clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Podtcheko, A. Ohtsuru, S. Tsuda, H. Namba, V. Saenko, M. Nakashima, N. Mitsutake, S. Kanda, J. Kurebayashi, S. Yamashita, The selective tyrosine kinase inhibitor, STI571, inhibits growth of anaplastic thyroid cancer cells. J. Clin. Endocrinol. Metab. 88, 1889–1896 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. G. Nagaiah, P. Fu, J.K. Wasman, M.M. Cooney, C. Mooney, D. Afshin, P. Lavertu, J. Bokar, P. Savvides, S.C. Remick, CTRU Research Nurses, University Hospitals Case Medical Center, Cleveland, OH, Case Western Reserve University, Cleveland, OH, University of Michigan, Ann Arbor, MI, West Virginia University, Morgantown, WV.: Phase II trial of sorafenib (bay 43-9006) in patients with advanced anaplastic carcinoma of the thyroid (ATC). J. Clin. Oncol. 27 (Suppl 15; Abstr 6058) (2009)

  3. J.M. Dziba, R. Marcinek, G. Venkataraman, J.A. Robinson, K.B. Ain, Combretastatin A4 phosphate has primary antineoplastic activity against human anaplastic thyroid carcinoma cell lines and xenograft tumors. Thyroid 12, 1063–1070 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. A.M. Straight, K. Oakley, R. Moores, A.J. Bauer, A. Patel, R.M. Tuttle, J. Jimeno, G.L. Francis, Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression of several angiogenic genes. Cancer Chemother. Pharmacol. 57, 7–14 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. J. Schoenberger, D. Grimm, P. Kossmehl, M. Infanger, E. Kurth, C. Eilles, Effects of PTK787/ZK222584, a tyrosine kinase inhibitor, on the growth of a poorly differentiated thyroid carcinoma: an animal study. Endocrinology 145, 1031–1038 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. A.J. Bauer, R. Terrell, N.K. Doniparthi, A. Patel, R.M. Tuttle, M. Saji, M.D. Ringel, G.L. Francis, Vascular endothelial growth factor monoclonal antibody inhibits growth of anaplastic thyroid cancer xenografts in nude mice. Thyroid 12, 953–961 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. C.N. Prichard, S. Kim, Y.D. Yazici, D.D. Doan, S.A. Jasser, M. Mandal, J.N. Myers, Concurrent cetuximab and bevacizumab therapy in a murine orthotopic model of anaplastic thyroid carcinoma. Laryngoscope 117, 674–679 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. B.A. Schiff, A.B. McMurphy, S.A. Jasser, M.N. Younes, D. Doan, O.G. Yigitbasi, S. Kim, G. Zhou, M. Mandal, B.N. Bekele, F.C. Holsinger, S.I. Sherman, S.C. Yeung, A.K. El-Naggar, J.N. Myers, Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin. Cancer Res. 10, 8594–8602 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Nobuhara, N. Onoda, Y. Yamashita, M. Yamasaki, K. Ogisawa, T. Takashima, T. Ishikawa, K. Hirakawa, Efficacy of epidermal growth factor receptor-targeted molecular therapy in anaplastic thyroid cancer cell lines. Br. J. Cancer 92, 1110–1116 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Kim, B.A. Schiff, O.G. Yigitbasi, D. Doan, S.A. Jasser, B.N. Bekele, M. Mandal, J.N. Myers, Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788. Mol. Cancer Ther. 4, 632–640 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. A. Antonelli, P. Fallahi, S. Ulisse, S.M. Ferrari, M. Minuto, G. Saraceno, F. Santini, V. Mazzi, M. D’Armiento, P. Miccoli, New targeted therapies for anaplastic thyroid cancer. Anticancer Agents Med. Chem. 12, 87–93 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. A. Antonelli, G. Bocci, C. La Motta, S.M. Ferrari, P. Fallahi, I. Ruffilli, A. Di Domenicantonio, A. Fioravanti, S. Sartini, M. Minuto, S. Piaggi, A. Corti, G. Alì, T. Di Desidero, P. Berti, G. Fontanini, R. Danesi, F. Da Settimo, P. Miccoli, CLM94, a novel cyclic amide with anti-VEGFR-2 and antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J. Clin. Endocrinol. Metab. 97, E528–E536 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. A. Antonelli, G. Bocci, P. Fallahi, C. La Motta, S.M. Ferrari, C. Mancusi, A. Fioravanti, T. Di Desidero, S. Sartini, A. Corti, S. Piaggi, G. Materazzi, C. Spinelli, G. Fontanini, R. Danesi, F. Da Settimo, P. Miccoli, CLM3, a multitarget tyrosine kinase inhibitor with antiangiogenic properties, is active against primary anaplastic thyroid cancer in vitro and in vivo. J. Clin. Endocrinol. Metab. 99, E572–E581 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. A. Antonelli, G. Bocci, C. La Motta, S.M. Ferrari, P. Fallahi, A. Fioravanti, S. Sartini, M. Minuto, S. Piaggi, A. Corti, G. Alì, P. Berti, G. Fontanini, R. Danesi, F. Da Settimo, P. Miccoli, Novel pyrazolopyrimidine derivatives as tyrosine kinase inhibitors with antitumoral activity in vitro and in vivo in papillary dedifferentiated thyroid cancer. J. Clin. Endocrinol. Metab. 96, E288–E296 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. A. Antonelli, G. Bocci, C. La Motta, S.M. Ferrari, P. Fallahi, A. Corrado, A. Fioravanti, S. Sartini, P. Orlandi, S. Piaggi, A. Corti, G. Materazzi, D. Galleri, S. Ulisse, G. Fontanini, R. Danesi, F. Da Settimo, P. Miccoli, CLM29, a multi-target pyrazolopyrimidine derivative, has anti-neoplastic activity in medullary thyroid cancer in vitro and in vivo. Mol. Cell. Endocrinol. 393, 56–64 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. S. Taliani, C. La Motta, L. Mugnaini, F. Simorini, S. Salerno, A.M. Marini, F. Da Settimo, S. Cosconati, B. Cosimelli, G. Greco, V. Limongelli, L. Marinelli, E. Novellino, O. Ciampi, S. Daniele, M.L. Trincavelli, C. Martini, Novel N2-substituted pyrazolo[3,4-d]pyrimidine adenosine A3 receptor antagonists: inhibition of A3-mediated human glioblastoma cell proliferation. J. Med. Chem. 53, 3954–3963 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. A. Antonelli, S.M. Ferrari, P. Fallahi, P. Berti, G. Materazzi, L. Barani, I. Marchetti, E. Ferrannini, P. Miccoli, Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clin. Endocrinol. (Oxf) 69, 148–152 (2008)

    Article  Google Scholar 

  18. A. Antonelli, S.M. Ferrari, P. Fallahi, P. Berti, G. Materazzi, I. Marchetti, C. Ugolini, F. Basolo, P. Miccoli, E. Ferrannini, Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur. J. Endocrinol. 159, 283–291 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. A. Antonelli, S.M. Ferrari, P. Fallahi, P. Berti, G. Materazzi, M. Minuto, R. Giannini, I. Marchetti, L. Barani, F. Basolo, E. Ferrannini, P. Miccoli, Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clin. Endocrinol. (Oxf) 70, 946–953 (2009)

    Article  CAS  Google Scholar 

  20. M.N. Nikiforova, Y.E. Nikiforov, Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev. Mol. Diagn. 8, 83–95 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. A. Antonelli, S.M. Ferrari, P. Fallahi, S. Frascerra, S. Piaggi, S. Gelmini, C. Lupi, M. Minuto, P. Berti, S. Benvenga, F. Basolo, C. Orlando, P. Miccoli, Dysregulation of secretion of CXC-chemokine CXCL10 in papillary thyroid cancer: modulation by peroxisome proliferator-activated receptor-agonists. Endocr. Relat. Cancer 16, 1299–1311 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. G. Bocci, A. Falcone, A. Fioravanti, P. Orlandi, A. Di Paolo, G. Fanelli, P. Viacava, A.G. Naccarato, R.S. Kerbel, R. Danesi, M. Del Tacca, G. Allegrini, Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib. Br. J. Cancer 98, 1619–1629 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. Carlomagno, D. Vitagliano, T. Guida, M. Napolitano, G. Vecchio, A. Fusco, A. Gazit, A. Levitzki, M. Santoro, The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res. 62, 1077–1082 (2002)

    CAS  PubMed  Google Scholar 

  24. F. Carlomagno, D. Vitagliano, T. Guida, F. Basolo, M.D. Castellone, R.M. Melillo, A. Fusco, M. Santoro, Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J. Clin. Endocrinol. Metab. 88, 1897–1902 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. R. Morisi, M. Celano, E. Tosi, S. Schenone, M. Navarra, E. Ferretti, G. Costante, C. Durante, G. Botta, M. D’Agostino, C. Brullo, S. Filetti, M. Botta, D. Russo, Growth inhibition of medullary thyroid carcinoma cells by pyrazolopyrimidine derivates. J. Endocrinol. Invest. RC30, RC31–RC34 (2007)

    Article  Google Scholar 

  26. J.H. Hanke, J.P. Gardner, R.L. Dow, P.S. Changelian, W.H. Brissette, E.J. Weringer, B.A. Pollok, P.A. Connelly, Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. J.M. Stommel, A.C. Kimmelman, H. Ying, R. Nabioullin, A.H. Ponugoti, R. Wiedemeyer, A.H. Stegh, J.E. Bradner, K.L. Ligon, C. Brennan, L. Chin, R.A. DePinho, Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. R. van Amerongen, A. Berns, Targeted anticancer therapies: mouse models help uncover the mechanisms of tumor escape. Cancer Cell 13, 5–7 (2008)

    Article  PubMed  Google Scholar 

  29. Z.A. Knight, H. Lin, K.M. Shokat, Targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer 10, 130–137 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. Lanzi, G. Cassinelli, G. Cuccuru, N. Zaffaroni, R. Supino, S. Vignati, C. Zanchi, M. Yamamoto, F. Zunino, Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1. Cell. Mol. Life Sci. 60, 1449–1459 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. F. Carlomagno, D. Vitagliano, T. Guida, F. Ciardiello, G. Tortora, G. Vecchio, A.J. Ryan, G. Fontanini, A. Fusco, M. Santoro, ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 62, 7284–7290 (2002)

    CAS  PubMed  Google Scholar 

  32. H.H. Verbeek, M.M. Alves, J.W. de Groot, J. Osinga, J.T. Plukker, T.P. Links, R.M. Hofstra, The effects of four different tyrosine kinase inhibitors on medullary and papillary thyroid cancer cells. J. Clin. Endocrinol. Metab. 96, E991–E995 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. K. Inoue, T. Torimura, T. Nakamura, H. Iwamoto, H. Masuda, M. Abe, O. Hashimoto, H. Koga, T. Ueno, H. Yano, M. Sata, Vandetanib, an inhibitor of VEGF receptor-2 and EGF receptor, suppresses tumor development and improves prognosis of liver cancer in mice. Clin. Cancer Res. 18, 3924–3933 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. A. Antonelli, P. Fallahi, S.M. Ferrari, C. Mancusi, M. Colaci, L. Santarpia, C. Ferri, RET TKI: potential role in thyroid cancers. Curr. Oncol. Rep. 14, 97–104 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. V. Bernet, R. Smallridge, New therapeutic options for advanced forms of thyroid cancer. Expert. Opin. Emerg. Drugs 19, 225–241 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. P. Fallahi, S.M. Ferrari, V. Mazzi, R. Vita, S. Benvenga, A. Antonelli, Personalization of targeted therapy in advanced thyroid cancer. Curr. Genomics 15, 190–202 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. E.N. Klein Hesselink, D. Steenvoorden, E. Kapiteijn, E.P. Corssmit, A.N. van der Horst-Schrivers, J.D. Lefrandt, T.P. Links, O.M. Dekkers, Therapy of endocrine disease: response and toxicity of small-molecule tyrosine kinase inhibitors in patients with thyroid carcinoma: a systematic review and meta-analysis. Eur. J. Endocrinol. 172, R215–R225 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Antonelli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahi, P., Ferrari, S.M., La Motta, C. et al. CLM29 and CLM24, pyrazolopyrimidine derivatives, have antitumoral activity in vitro in anaplastic thyroid cancer, with or without BRAF mutation. Endocrine 53, 136–144 (2016). https://doi.org/10.1007/s12020-015-0717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0717-4

Keywords

Navigation