Skip to main content

Advertisement

Log in

Preclinical testing of selective Aurora kinase inhibitors on a medullary thyroid carcinoma-derived cell line

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Deregulated expression of the Aurora kinases (Aurora-A, B, and C) is thought to be involved in cell malignant transformation and genomic instability in several cancer types. Over the last decade, a number of small-molecule inhibitors of Aurora kinases have been developed, which have proved to efficiently restrain malignant cell growth and tumorigenicity. Regarding medullary thyroid carcinoma (MTC), we previously showed the efficacy of a pan-Aurora kinase inhibitor (MK-0457) in impairing growth and survival of the MTC-derived cell line TT. In the present study, we sought to establish if one of the Aurora kinases might represent a preferential target for MTC therapy. The effects of selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) were analyzed on TT cell proliferation, apoptosis, cell cycle, and ploidy. The two inhibitors reduced TT cell proliferation in a time- and dose-dependent manner, with IC50 of 19.0 ± 2.4 nM for MLN8237 and 401.6 ± 44.1 nM for AZD1152. Immunofluorescence experiments confirmed that AZD1152 inhibited phosphorylation of histone H3 (Ser10) by Aurora-B, while it did not affect Aurora-A autophosphorylation. MLN8237 inhibited Aurora-A autophosphorylation as expected, but at concentrations required to achieve the maximum antiproliferative effects it also abolished H3 (Ser10) phosphorylation. Cytofluorimetry experiments showed that both inhibitors induced accumulation of cells in G2/M phase and increased the subG0/G1 fraction and polyploidy. Finally, both inhibitors triggered apoptosis. We demonstrated that inhibition of either Aurora-A or Aurora-B has antiproliferative effects on TT cells, and thus it would be worthwhile to further investigate the therapeutical potential of Aurora kinase inhibitors in MTC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.W. Ke, Z. Dou, J. Zhang, X.B. Yao, Function and regulation of Aurora/IpI1p kinase family in cell division. Cell Res. 13, 69–81 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. M. Carmena, W.C. Earnshaw, The cellular geography of Aurora kinases. Nat. Rev. 4, 842–854 (2003)

    Article  CAS  Google Scholar 

  3. J.R. Bischoff, G.D. Plowman, The Aurora/IpI1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9, 454–459 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. M. Kimura, Y. Matsuda, T. Yoshioka, Y. Okano, Cell cycle-dependent expression and centrosome localization of a third human Aurora/IpI1-related protein kinase, AIK3. J. Biol. Chem. 274, 7334–7340 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. C.J. Tang, C.Y. Lin, T.K. Tang, Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev. Biol. 290, 398–410 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. S.D. Slattery, R.V. Moore, B.R. Brinkley, R.M. Hall, Aurora-C and Aurora-B share phosphorylation and regulation of CENP-A and Borealin during mitosis. Cell Cycle 7, 787–795 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. J.C. Gabillard, S. Ulisse, E. Baldini, S. Sorrenti, J.Y. Cremet, C. Coccaro et al., Aurora-C interacts with and phosphorylates the transforming acidic coiled-coil 1 protein. Biochem. Biophys. Res. Commun. 408, 647–653 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. S. Ulisse, J.G. Delcros, E. Baldini, M. Toller, F. Curcio, L. Giacomelli et al., Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int. J. Cancer 119, 275–282 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. S. Ulisse, J.G. Delcros, E. Baldini, M. Toller, F. Curcio, L. Giacomelli et al., Transforming acidic coiled-coil 3 and Aurora-A interact in human thyrocytes and their expression is deregulated in thyroid cancer tissues. Endocr. Relat. Cancer 14, 831–842 (2007)

    Google Scholar 

  10. B.R. Brinkley, Managing the centrosome number games: from chaos to stability in cancer cell division. Trends Cell Biol. 11, 18–21 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. W. Dove, Aurora and the hunt for cancer-modifying genes. Nat. Genet. 34, 353–354 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. J.R. Bischoff, L. Anderson, Y. Zhu, K. Mossie, L. Ng, B. Souza et al., A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancer. EMBO J. 17, 3052–3065 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Tatsuka, H. Katayama, T. Ota, T. Tanaka, S. Odashima, F. Suzuki et al., Multinuclearity and increased ploidy caused by overexpression of the Aurora- and IpI1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res. 58, 4811–4816 (1998)

    CAS  PubMed  Google Scholar 

  14. T. Takahashi, M. Futamura, N. Yoshimi, J. Sano, M. Katada, Y. Takagi et al., Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancer. Jpn. J. Cancer Res. 91, 1007–1014 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Miyoshi, K. Iwao, C. Egawa, S. Noguchi, Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancer. Int. J. Cancer 92, 370–373 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. H. Zhou, J. Kuang, L. Zhong, W.L. Kuo, J.W. Gray, A. Sahin et al., Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20, 189–193 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. P.D. Andrews, Aurora kinases: shining lights on the therapeutic horizon? Oncogene 24, 5005–5015 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. T. Ota, S. Suto, H. Katayama, Z.B. Han, F. Suzuki, M. Maeda et al., Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res. 62, 5168–5177 (2002)

    CAS  PubMed  Google Scholar 

  19. E.A. Harrington, D. Bebbington, J. Moore, R.K. Rasmussen, A.O. Ajose-Adeogun, T. Nakayama et al., VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 10, 262–267 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Arlot-Bonnemains, E. Baldini, B. Martin, J.G. Delcros, M. Toller, F. Curcio et al., Effects of the Aurora kinase inhibitor VX-680 on anaplastic thyroid cancer-derived cell lines. Endocr. Relat. Cancer 15, 559–568 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. S. Ulisse, Y. Arlot-Bonnemains, E. Baldini, S. Morrone, S. Carocci, L. Di Luigi et al., Inhibition of the aurora kinases suppresses in vitro NT2-D1 cell growth and tumorigenicity. J. Endocrinol. 204, 135–142 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. M.I. Hu, A.K. Ying, C. Jimenez, Update on medullary thyroid cancer. Endocrinol. Metab. Clin. North Am. 43, 423–442 (2014)

    Article  PubMed  Google Scholar 

  23. J.W. de Groot, T.P. Links, J.T. Plukker, C.J. Lips, R.M. Hofstra, RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr. Rev. 27, 535–560 (2006)

    Article  PubMed  Google Scholar 

  24. A.P. Dackiw, The surgical management of medullary thyroid cancer. Otolaryngol. Clin. North Am. 43, 365–374 (2010)

    Article  PubMed  Google Scholar 

  25. S. Sorrenti, E. Guaitoli, A. Catania, V. D’Andrea, F.M. Di Matteo, M. Nardi et al., Surgical strategies in patients with medullary thyroid carcinoma. Clin. Ther. 163, E303–E306 (2012)

    CAS  Google Scholar 

  26. A. Hidalgo, M.E. Medrano, S. Rodrìguez, C. Franco, I. Martinez, L. Benítez et al., Presence of the 918 mutation in the RET proto-oncogene in a Mexican patient with multiple endocrine neoplasia type 2B. J. Exp. Clin. Cancer Res. 17, 149–152 (1998)

    CAS  PubMed  Google Scholar 

  27. M. Schlumberger, F. Carlomagno, E. Baudin, J.M. Bidart, M. Santoro, New therapeutic approaches to treat medullary thyroid carcinoma. Nat. Clin. Pract. 4, 22–32 (2008)

    Article  CAS  Google Scholar 

  28. D.W. Ball, Medullary thyroid cancer: therapeutic targets and molecular markers. Curr. Opin. Oncol. 19, 18–23 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Medullary Thyroid Carcinoma Clinical Group, S. Ruiz-Llorente, C. Montero-Conde, R.L. Milne, C.M. Moya, A. Cebrián, R. Letón et al., Association study of 69 genes in the ret pathway identifies low-penetrance loci in sporadic medullary thyroid carcinoma. Cancer Res. 67, 9561–9567 (2007)

    Article  Google Scholar 

  30. D. Vezzosi, A. Bennet, P. Caron, Recent advances in treatment of medullary thyroid carcinoma. Ann. Endocrinol. 68, 147–153 (2007)

    Article  CAS  Google Scholar 

  31. H. Takami, M. Niimi, Y. Ikeda, Prognosis of a family with familial medullary thyroid carcinoma. J. Exp. Clin. Cancer Res. 18, 223–224 (1999)

    CAS  PubMed  Google Scholar 

  32. I. Vainas, Ch. Koussis, K. Pazaitou-Panayiotou, A. Drimonitis, A. Chrisoulidou, I. Iakovou et al., Somatostatin receptor expression in vivo and response to somatostatin analog therapy with or without other antineoplastic treatments in advanced medullary thyroid carcinoma. J. Exp. Clin. Cancer Res. 23, 549–559 (2004)

    CAS  PubMed  Google Scholar 

  33. M.G. Manfredi, J.A. Ecsedy, A. Chakravarty, L. Silverman, M. Zhang, K.M. Hoar et al., Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin. Cancer Res. 17, 7614–7624 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. R.W. Wilkinson, R. Odedra, S.P. Heaton, S.R. Wedge, N.J. Keen, C. Crafter et al., AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 13, 3682–3688 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. S.S. Leong, J.S. Horoszewicz, K. Shimaoka, M. Friedman, E. Kawinski, M.J. Song et al., A new cell line for study of human medullary thyroid carcinoma, in Advances in thyroid neoplasia, ed. by M. Andreoli, F. Monaco, J. Robbins (Field Educational Italia, Rome, 1981), pp. 95–108

    Google Scholar 

  36. F. Carlomagno, D. Salvatore, M. Santoro, V. de Franciscis, L. Quadro, L. Panariello et al., Point mutation of the RET proto-oncogene in the TT human medullary thyroid carcinoma cell line. Biochem. Biophys. Res. Commun. 207, 1022–1028 (1995)

    Article  CAS  PubMed  Google Scholar 

  37. D.J. Marsh, G. Theodosopoulos, K. Martin-Schulte, A.L. Richardson, J. Philips, H.D. Röher et al., Genome-wide copy number imbalances identified in familial and sporadic medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 88, 1866–1872 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. E.N. Klein Hesselink, D. Steenvoorden, E. Kapiteijn, E.P. Corssmit, A.N. van der Horst-Schrivers, J.D. Lefrandt et al., Therapy of endocrine disease: response and toxicity of small-molecule tyrosine kinase inhibitors in patients with thyroid carcinoma: a systematic review and meta-analysis. Eur. J. Endocrinol. 172, R215–R225 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. E. Baldini, Y. Arlot-Bonnemains, S. Sorrenti, C. Mian, M.R. Pelizzo, E. De Antoni et al., Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT. BMC Cancer 11, 411 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Su, S. Pan, Z. Li, L. Li, X. Wu, P. Hao et al., Multiplex imaging and cellular target identification of kinase inhibitors via an affinity-based proteome profiling approach. Sci. Rep. 5, 7724 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. W. Qi, L.S. Cooke, X. Liu, L. Rimsza, D.J. Roe, A. Manziolli et al., Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem. Pharmacol. 81, 881–890 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D. Mori, Y. Yano, K. Toyo-oka, N. Yoshida, M. Yamada, M. Maramatsu et al., NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation and TACC3 recruitment. Mol. Cell. Biol. 27, 352–367 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Cazales, E. Schmitt, E. Montembault, C. Dozier, C. Prigent, B. Ducommun, CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 4, 1233–1238 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. A. Seki, J.A. Coppinger, C.Y. Jang, J.R. Yates, G. Fang, Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D.A. Brito, C.L. Rieder, Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN 2010-2011, protocol n. 2010BX2SNA_002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Ulisse.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Chiara Tuccilli and Enke Baldini have provided an equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuccilli, C., Baldini, E., Prinzi, N. et al. Preclinical testing of selective Aurora kinase inhibitors on a medullary thyroid carcinoma-derived cell line. Endocrine 52, 287–295 (2016). https://doi.org/10.1007/s12020-015-0700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0700-0

Keywords

Navigation