Skip to main content

Advertisement

Log in

Low extracellular sodium promotes adipogenic commitment of human mesenchymal stromal cells: a novel mechanism for chronic hyponatremia-induced bone loss

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Hyponatremia represents an independent risk factor for osteoporosis and fractures, affecting both bone density and quality. A direct stimulation of bone resorption in the presence of reduced extracellular sodium concentrations ([Na+]) has been shown, but the effects of low [Na+] on osteoblasts have not been elucidated. We investigated the effects of a chronic reduction of extracellular [Na+], independently of osmotic stress, on human mesenchymal stromal cells (hMSC) from bone marrow, the common progenitor for osteoblasts and adipocytes. hMSC adhesion and viability were significantly inhibited by reduced [Na+], but their surface antigen profile and immuno-modulatory properties were not altered. In low [Na+], hMSC were able to commit toward both the osteogenic and the adipogenic phenotypes, as demonstrated by differentiation markers analysis. However, the dose-dependent increase in the number of adipocytes as a function of reduced [Na+] suggested a preferential commitment toward the adipogenic phenotype at the expense of osteogenesis. The amplified inhibitory effect on the expression of osteoblastic markers exerted by adipocytes-derived conditioned media in low [Na+] further supported this observation. The analysis of cytoskeleton showed that low [Na+] were associated with disruption of tubulin organization in hMSC-derived osteoblasts, thus suggesting a negative effect on bone quality. Finally, hMSC-derived osteoblasts increased their expression of factors stimulating osteoclast recruitment and activity. These findings confirm that hyponatremia should be carefully taken into account because of its negative effects on bone, in addition to the known neurological effects, and indicate for the first time that impaired osteogenesis may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Upadhyay, B.L. Jaber, N.E. Madias, Incidence and prevalence of hyponatremia. Am. J. Med. 119, S30–S35 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. E.J. Hoorn, J. Lindemans, R. Zietse, Development of severe hyponatremia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol. Dial. Transplant. 21, 70–76 (2006)

    Article  PubMed  Google Scholar 

  3. G. Corona, C. Giuliani, G. Parenti, D. Norello, J.G. Verbalis, G. Forti, M. Maggi, A. Peri, Moderate hyponatremia is associated with increased risk of mortality: evidence from a meta-analysis. PLoS One 8, e80451 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  4. B. Renneboog, W. Musch, X. Vandemergel, M.U. Manto, G. Decaux, Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am. J. Med. 119, 71.e1–71.e8 (2006)

    Article  Google Scholar 

  5. S. Kinsella, S. Moran, M.O. Sullivan, M.G. Molloy, J.A. Eustace, Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin. J. Am. Soc. Nephrol. 5, 275–280 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E.J. Hoorn, F. Rivadeneira, J.B. van Meurs, G. Ziere, B.H. Stricker, A. Hofman, H.A. Pols, R. Zietse, A.G. Uitterlinden, M.C. Zillikens, Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. J. Bone Miner. Res. 26, 1822–1828 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. R. Hasserius, M.K. Karlsson, B.E. Nilsson, I. Redlund-Johnell, O. Johnell, Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporosis Int. 14, 61–68 (2003)

    Article  CAS  Google Scholar 

  8. F. Gankam-Kengne, C. Andres, L. Sattar, C. Melot, G. Decaux, Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM 101, 583–588 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. H.S. Sandhu, E. Gilles, M.V. DeVita, G. Panagopoulos, M.F. Michelis, Hyponatremia associated with large-bone fracture in elderly patients. Int. Urol. Nephrol. 41, 733–737 (2009)

    Article  PubMed  Google Scholar 

  10. R. Tolouian, T. Alhamad, M. Farazmand, Z.D. Mulla, The correlation of hip fracture and hyponatremia in the elderly. J. Nephrol. 25, 789–793 (2012)

    Article  PubMed  Google Scholar 

  11. T. Hagino, S. Ochiai, Y. Watanabe, S. Senga, M. Saito, Y. Takayama, M. Wako, T. Ando, E. Sato, H. Haro, Hyponatremia at admission is associated with in-hospital death in patients with hip fracture. Arch. Orthop. Trauma Surg. 133, 507–511 (2013)

    Article  PubMed  Google Scholar 

  12. J.G. Verbalis, J. Barsony, Y. Sugimura, Y. Tian, D.J. Adams, E.A. Carter, H.E. Resnick, Hyponatremia-induced osteoporosis. J. Bone Miner. Res. 25, 554–563 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A.S. Sejling, U. Pedersen-Bjergaard, P. Eiken, Syndrome of inappropriate ADH secretion and severe osteoporosis. J. Clin. Endocrinol. Metab. 97, 4306–4310 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. A.S. Sejling, A.L. Thorsteinsson, U. Pedersen-Bjergaard, P. Eiken, Recovery from SIADH-associated osteoporosis: a case report. J. Clin. Endocrinol. Metab. 99, 3527–3530 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. C. Kruse, P. Eiken, P. Vestergaard, Hyponatremia and osteoporosis: insights from the Danish National Patient Registry. Osteoporos. Int. 26, 1005–1016 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. F. Afshinnia, B. Sundaram, R.J. Ackermann, K.K. Wong, Hyponatremia and osteoporosis: reappraisal of a novel association. Osteoporos. Int. (2015). doi:10.1007/s00198-015-3108-z

    PubMed  Google Scholar 

  17. J. Barsony, Y. Sugimura, J.G. Verbalis, Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J. Biol. Chem. 286, 10864–10875 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W.H. Bergstrom, The participation of bone in total body sodium metabolism in the rat. J. Clin. Invest. 34, 97–104 (1955)

    Article  Google Scholar 

  19. I.S. Edelman, A.H. James, H. Baden, F.D. Moore, Electrolyte composition of bone and the penetration of radiosodium and deuterium oxide into dog and human bone. J. Clin. Invest. 33, 122–131 (1954)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J.G. Verbalis, S.R. Goldsmith, A. Greenberg, C. Korzelius, R.W. Schrier, R.H. Sterns, C.J. Thompson, Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am. J. Med. 126, S1–S42 (2013)

    Article  PubMed  Google Scholar 

  21. S. Benvenuti, C. Deledda, P. Luciani, G. Modi, A. Bossio, C. Giuliani, B. Fibbi, A. Peri, Low extracellular sodium causes neuronal distress independently of reduced osmolality in an experimental model of chronic hyponatremia. Neuromolecular Med. 15, 493–503 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. D. Baksh, L. Song, R.S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell Mol. Med. 8, 301–316 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. P. Sambrook, C. Cooper, Osteoporosis. Lancet 367, 2010–2018 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. R. Tamma, L. Sun, C. Cuscito, P. Lu, M. Corcelli, J. Li, G. Colaianni, S.S. Moonga, A. Di Benedetto, M. Grano, S. Colucci, T. Yuen, M.I. New, A. Zallone, M. Zaidi, Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc. Natl. Acad. Sci. USA 110, 18644–18649 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T.J. Wronski, C.C. Walsh, L.A. Ignaszewski, Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7, 119–123 (1986)

    Article  CAS  PubMed  Google Scholar 

  26. E.J. Moerman, K. Teng, D.A. Lipschitz, B. Lecka-Czernik, Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPARγ2 transcription factor and TGF-β/BMP signalling pathways. Aging Cell 3, 379–389 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Zayzafon, W.E. Gathings, J.M. McDonald, Modeled microgravity inhibit osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145, 2421–2432 (2004)

    Article  Google Scholar 

  28. L. Forsen, H.E. Meyer, K. Misthjell, T.H. Edna, Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42, 920–925 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. S. Benvenuti, I. Cellai, P. Luciani, C. Deledda, S. Baglioni, C. Giuliani, R. Saccaridi, B. Mozzanti, S. Dal Pozzo, E. Mannucci, A. Peri, M. Serio, Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J. Endocrinol. Invest. 30, RC26–RC30 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. A.C. Maurin, P.M. Chavassieux, L. Frappart, P.D. Delmas, C.M. Serre, P.J. Meunier, Influence of mature adipocytes on osteoblast proliferation in human primary co-cultures. Bone 26, 485–489 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. A.C. Maurin, P.M. Chavassieux, E. Vericel, P.J. Meunier, Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone 31, 260–266 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. J. Bassols, F.J. Ortega, J.M. Moreno-Navarrete, B. Peral, W. Ricart, J.M. Fernández-Real, Study of the proinflammatory role of human differentiated omental adipocytes. J. Cell. Biochem. 107, 1107–1117 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. S. Kwan Tat, M. Padrines, S. Théoleyre, D. Heymann, Y. Fortun, IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49–60 (2004)

    Article  PubMed  Google Scholar 

  35. C.J. Rosen, C. Ackert-Bicknell, J.P. Rodriguez, A.M. Pino, Marrow fat and the bone microenvironment: developmental, functional and pathological implications. Crit. Rev. Eukariot. Gene Expr. 19, 109–124 (2009)

    Article  CAS  Google Scholar 

  36. A. Krings, S. Rahman, S. Huang, Y. Lu, P.J. Czernik, B. Lecka-Czernik, Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50, 546–552 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Zhao, S. Ko, J.H. Liu, D. Chen, J. Zhang, B. Wang, S.E. Harris, B.O. Oyajobi, G.R. Mundy, Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2. Mol. Cell. Biol. 29, 1291–1305 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H.F. Al-Jallad, V.D. Myneni, S.A. Piercy-Kotb, N. Chabot, A. Mulani, J.W. Keillor, M.T. Kaartinen, Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics. PLoS One 6, e15893 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. W. Yang, X. Guo, S. Thein, F. Xu, S. Sugii, P.W. Baas, G.K. Radda, W. Han, Regulation of adipogenesis by cytoskeleton remodeling is facilitated by acetyltransferase MEC-17-dependent acetylation of α-tubulin. Biochem. J. 449, 605–612 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. A.P. Molloy, F.T. Martin, R.M. Dwyer, T.P. Griffin, M. Murphy, F.P. Barry, T. O’Brien, M.J. Kerin, Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int. J. Cancer 124, 326–332 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. A. Kortesidis, A. Zannettino, S. Isenmann, S. Shi, T. Lapidot, S. Gronthos, Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105, 3793–3801 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. H. Goto, A. Hozumi, M. Osaki, T. Fukushima, K. Sakamoto, A. Yonekura, M. Tomita, K. Furukawa, H. Shindo, H. Baba, Primary human bone marrow adipocytes support TNF-α-induced osteoclast differentiation and function through RANKL expression. Cytokine 56, 662–668 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ente Cassa di Risparmio di Firenze for supporting the study.

Conflict of interest

Benedetta Fibbi, Susanna Benvenuti, Corinna Giuliani, Cristiana Deledda, Paola Luciani, Monica Monici, Benedetta Mazzanti, Clara Ballerini, and Alessandro Peri declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fibbi, B., Benvenuti, S., Giuliani, C. et al. Low extracellular sodium promotes adipogenic commitment of human mesenchymal stromal cells: a novel mechanism for chronic hyponatremia-induced bone loss. Endocrine 52, 73–85 (2016). https://doi.org/10.1007/s12020-015-0663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0663-1

Keywords

Navigation