Skip to main content

Advertisement

Log in

Nonclassic congenital adrenal hyperplasia due to 21-hydroxylase deficiency: clinical presentation, diagnosis, treatment, and outcome

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Nonclassic congenital adrenal hyperplasia (NCAH) is one of the most frequent autosomal recessive disorders in man with a prevalence ranging from 0.1 % in Caucasians up to a few percent in certain ethnic groups. Most cases are never diagnosed due to very mild symptoms, misdiagnosing as polycystic ovary syndrome, or ignorance. In contrast to classic CAH, patients with NCAH present with mild partial cortisol insufficiency and hyperandrogenism and will survive without any treatment. Undiagnosed NCAH may result in infertility, miscarriages, oligomenorrhea, hirsutism, acne, premature pubarche, testicular adrenal rest tumors, adrenal tumors, and voice problems among other symptoms. A baseline measurement of 17-hydroxyprogesterone can be used for diagnosis, but the ACTH stimulation test with measurement of 17-hydroxyprogesterone is regarded as the golden standard. The diagnosis can be verified by CYP21A2 mutation analysis. Treatment is symptomatic and usually with glucocorticoids alone. The lowest possible glucocorticoid dose should be used. Long-term treatment with glucocorticoids will improve the symptoms but will also result in iatrogenic cortisol insufficiency and may also lead to long-term complications such as obesity, insulin resistance, hypertension, osteoporosis, and fractures. Although the complications seen in NCAH patients have been assumed to be related to the glucocorticoid treatment, some may, in fact, be associated with prolonged hyperandrogenism. Different risk factors and negative consequences should be monitored regularly in an attempt to improve the clinical outcome. More research is needed in this relatively common disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Crecchio, Sopra un caso di apparenzi virili in una donna. I Morgagni 7, 154–188 (1865)

    Google Scholar 

  2. J. Decourt, M.F. Jayle, E. Baulieu, Clinically late virilism with excretion of pregnanetriol and insufficiency of cortisol production. Ann. Endocrinol. 18(3), 416–422 (1957)

    CAS  Google Scholar 

  3. P.C. White, M.I. New, B. Dupont, HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation. Proc. Natl. Acad. Sci. U.S.A. 81(23), 7505–7509 (1984)

    PubMed Central  CAS  PubMed  Google Scholar 

  4. B. McCann-Crosby, M.J. Chen, S.K. Lyons, Y. Lin, M. Axelrad, J.E. Dietrich, V.R. Sutton, C.G. Macias, S. Gunn, L. Karaviti, Nonclassical congenital adrenal hyperplasia: targets of treatment and transition. Pediatr. Endocrinol. Rev. 12(2), 224–238 (2014)

    PubMed  Google Scholar 

  5. P.C. White, P.W. Speiser, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 21(3), 245–291 (2000)

    CAS  PubMed  Google Scholar 

  6. D.P. Merke, S.R. Bornstein, Congenital adrenal hyperplasia. Lancet 365(9477), 2125–2136 (2005). doi:10.1016/S0140-6736(05)66736-0

    PubMed  Google Scholar 

  7. M.T. Tusie-Luna, P. Traktman, P.C. White, Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J. Biol. Chem. 265(34), 20916–20922 (1990)

    CAS  PubMed  Google Scholar 

  8. M.I. New, Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91(11), 4205–4214 (2006). doi:10.1210/jc.2006-1645

    CAS  PubMed  Google Scholar 

  9. J. Fiet, B. Gueux, M.C. Raux-DeMay, F. Kuttenn, P. Vexiau, J.L. Brerault, P. Couillin, H. Galons, J.M. Villette, R. Julien et al., Increased plasma 21-deoxycorticosterone (21-DB) levels in late-onset adrenal 21-hydroxylase deficiency suggest a mild defect of the mineralocorticoid pathway. J. Clin. Endocrinol. Metab. 68(3), 542–547 (1989)

    CAS  PubMed  Google Scholar 

  10. H. Falhammar, H. Filipsson Nystrom, A. Wedell, M. Thoren, Cardiovascular risk, metabolic profile, and body composition in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur. J. Endocrinol. 164(2), 285–293 (2011). doi:10.1530/EJE-10-0877

    CAS  PubMed  Google Scholar 

  11. E. Charmandari, G. Eisenhofer, S.L. Mehlinger, A. Carlson, R. Wesley, M.F. Keil, G.P. Chrousos, M.I. New, D.P. Merke, Adrenomedullary function may predict phenotype and genotype in classic 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 87(7), 3031–3037 (2002). doi:10.1210/jcem.87.7.8664

    CAS  PubMed  Google Scholar 

  12. G.P. Finkielstain, M.S. Kim, N. Sinaii, M. Nishitani, C. Van Ryzin, S.C. Hill, J.C. Reynolds, R.M. Hanna, D.P. Merke, Clinical characteristics of a cohort of 244 patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 97(12), 4429–4438 (2012). doi:10.1210/jc.2012-2102

    PubMed Central  CAS  PubMed  Google Scholar 

  13. C. Moran, R. Azziz, E. Carmina, D. Dewailly, F. Fruzzetti, L. Ibanez, E.S. Knochenhauer, J.A. Marcondes, B.B. Mendonca, D. Pignatelli, M. Pugeat, V. Rohmer, P.W. Speiser, S.F. Witchel, 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am. J. Obstet. Gynecol. 183(6), 1468–1474 (2000). doi:10.1067/mob.2000.108020

    CAS  PubMed  Google Scholar 

  14. M. Bidet, C. Bellanne-Chantelot, M.B. Galand-Portier, V. Tardy, L. Billaud, K. Laborde, C. Coussieu, Y. Morel, C. Vaury, J.L. Golmard, A. Claustre, E. Mornet, Z. Chakhtoura, I. Mowszowicz, A. Bachelot, P. Touraine, F. Kuttenn, Clinical and molecular characterization of a cohort of 161 unrelated women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency and 330 family members. J. Clin. Endocrinol. Metab. 94(5), 1570–1578 (2009). doi:10.1210/jc.2008-1582

    CAS  PubMed  Google Scholar 

  15. S. Livadas, M. Dracopoulou, A. Dastamani, A. Sertedaki, M. Maniati-Christidi, A.M. Magiakou, C. Kanaka-Gantenbein, G.P. Chrousos, C. Dacou-Voutetakis, The spectrum of clinical, hormonal and molecular findings in 280 individuals with nonclassical congenital adrenal hyperplasia caused by mutations of the CYP21A2 gene. Clin. Endocrinol. (2014). doi:10.1111/cen.12543

    Google Scholar 

  16. D. Pignatelli, Non-classic adrenal hyperplasia due to the deficiency of 21-hydroxylase and its relation to polycystic ovarian syndrome. Front. Horm. Res. 40, 158–170 (2013). doi:10.1159/000342179

    CAS  PubMed  Google Scholar 

  17. N.M. Stikkelbroeck, A.R. Hermus, D. Schouten, H.M. Suliman, G.J. Jager, D.D. Braat, B.J. Otten, Prevalence of ovarian adrenal rest tumours and polycystic ovaries in females with congenital adrenal hyperplasia: results of ultrasonography and MR imaging. Eur. Radiol. 14(10), 1802–1806 (2004). doi:10.1007/s00330-004-2329-x

    PubMed  Google Scholar 

  18. H. Falhammar, M. Thoren, K. Hagenfeldt, A 31-year-old woman with infertility and polycystic ovaries diagnosed with non-classic congenital adrenal hyperplasia due to a novel CYP21 mutation. J. Endocrinol. Invest. 31(2), 176–180 (2008)

    CAS  PubMed  Google Scholar 

  19. M. Pall, R. Azziz, J. Beires, D. Pignatelli, The phenotype of hirsute women: a comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil. Steril. 94(2), 684–689 (2010). doi:10.1016/j.fertnstert.2009.06.025

    CAS  PubMed  Google Scholar 

  20. R. Azziz, E. Carmina, D. Dewailly, E. Diamanti-Kandarakis, H.F. Escobar-Morreale, W. Futterweit, O.E. Janssen, R.S. Legro, R.J. Norman, A.E. Taylor, S.F. Witchel, The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91(2), 456–488 (2009). doi:10.1016/j.fertnstert.2008.06.035

    PubMed  Google Scholar 

  21. M. Placzek, B. Arnold, H. Schmidt, S. Gaube, E. Keller, G. Plewig, K. Degitz, Elevated 17-hydroxyprogesterone serum values in male patients with acne. J. Am. Acad. Dermatol. 53(6), 955–958 (2005). doi:10.1016/j.jaad.2005.07.014

    PubMed  Google Scholar 

  22. K.E. Sharquie, A.A. Noaimi, B.O. Saleh, Z.N. Anbar, The frequency of 21-alpha hydroxylase enzyme deficiency and related sex hormones in Iraqi healthy male subjects versus patients with acne vulgaris. Saudi Med. J. 30(12), 1547–1550 (2009)

    PubMed  Google Scholar 

  23. V. Caputo, S. Fiorella, S. Curiale, A. Caputo, M. Niceta, Refractory acne and 21-hydroxylase deficiency in a selected group of female patients. Dermatology 220(2), 121–127 (2010). doi:10.1159/000277608

    CAS  PubMed  Google Scholar 

  24. H. Falhammar, M. Thoren, An 88-year-old woman diagnosed with adrenal tumor and congenital adrenal hyperplasia: connection or coincidence? J. Endocrinol. Invest. 28(5), 449–453 (2005). 3150 [pii]

    CAS  PubMed  Google Scholar 

  25. T.S. Varness, D.B. Allen, G.L. Hoffman, Newborn screening for congenital adrenal hyperplasia has reduced sensitivity in girls. J. Pediatr. 147(4), 493–498 (2005). doi:10.1016/j.jpeds.2005.04.035

    PubMed  Google Scholar 

  26. S. Gidlöf, H. Falhammar, A. Thilén, A. von Döbeln, M. Ritzén, A. Wedell, A. Nordenström, One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 1(1), 35–43 (2013). doi:10.1016/S2213-8587(13)70007-X

    PubMed  Google Scholar 

  27. S. Gidlof, A. Wedell, C. Guthenberg, U. von Dobeln, A. Nordenstrom, Nationwide neonatal screening for congenital adrenal hyperplasia in Sweden: a 26-year longitudinal prospective population-based study. JAMA Pediatr. 168, 1–8 (2014). doi:10.1001/jamapediatrics.2013.5321

    Google Scholar 

  28. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Metabolic profile and body composition in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92(1), 110–116 (2007). doi:10.1210/jc.2006-1350

    CAS  PubMed  Google Scholar 

  29. H. Falhammar, Non-functioning adrenal incidentalomas caused by 21-hydroxylase deficiency or carrier status? Endocrine 47(1), 308–314 (2014). doi:10.1007/s12020-013-0162-1

    CAS  PubMed  Google Scholar 

  30. P.C. White, Neonatal screening for congenital adrenal hyperplasia. Nature reviews. Endocrinology 5(9), 490–498 (2009). doi:10.1038/nrendo.2009.148

    CAS  PubMed  Google Scholar 

  31. R. Azziz, L.A. Hincapie, E.S. Knochenhauer, D. Dewailly, L. Fox, L.R. Boots, Screening for 21-hydroxylase-deficient nonclassic adrenal hyperplasia among hyperandrogenic women: a prospective study. Fertil. Steril. 72(5), 915–925 (1999)

    CAS  PubMed  Google Scholar 

  32. T.A. Bachega, A.E. Billerbeck, J.A. Marcondes, G. Madureira, I.J. Arnhold, B.B. Mendonca, Influence of different genotypes on 17-hydroxyprogesterone levels in patients with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. 52(5), 601–607 (2000)

    CAS  Google Scholar 

  33. P.W. Speiser, R. Azziz, L.S. Baskin, L. Ghizzoni, T.W. Hensle, D.P. Merke, H.F. Meyer-Bahlburg, W.L. Miller, V.M. Montori, S.E. Oberfield, M. Ritzen, P.C. White, Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95(9), 4133–4160 (2010). doi:10.1210/jc.2009-2631

    PubMed Central  CAS  PubMed  Google Scholar 

  34. B.L. Therrell Jr, S.A. Berenbaum, V. Manter-Kapanke, J. Simmank, K. Korman, L. Prentice, J. Gonzalez, S. Gunn, Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 101(4 Pt 1), 583–590 (1998)

    PubMed  Google Scholar 

  35. A. Thil’en, A. Nordenstrom, L. Hagenfeldt, U. von Dobeln, C. Guthenberg, A. Larsson, Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden. Pediatrics 101(4), E11 (1998)

    PubMed  Google Scholar 

  36. N.L. Heather, S.N. Seneviratne, D. Webster, J.G. Derraik, C. Jefferies, J. Carll, Y. Jiang, W.S. Cutfield, P.L. Hofman, Newborn screening for congenital adrenal hyperplasia in New Zealand, 1994-2013. J. Clin. Endocrinol. Metab. 100(3), 1002–1008 (2015). doi:10.1210/jc.2014-3168

    PubMed  Google Scholar 

  37. P.W. Speiser, B. Dupont, P. Rubinstein, A. Piazza, A. Kastelan, M.I. New, High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 37(4), 650–667 (1985)

    PubMed Central  CAS  PubMed  Google Scholar 

  38. M. Dumic, L. Brkljacic, P.W. Speiser, E. Wood, C. Crawford, V. Plavsic, M. Baniceviac, S. Radmanovic, A. Radica, A. Kastelan et al., An update on the frequency of nonclassic deficiency of adrenal 21-hydroxylase in the Yugoslav population. Acta Endocrinol. 122(6), 703–710 (1990)

    CAS  PubMed  Google Scholar 

  39. M. Zerah, H. Ueshiba, E. Wood, P.W. Speiser, C. Crawford, T. McDonald, J. Pareira, D. Gruen, M.I. New, Prevalence of nonclassical steroid 21-hydroxylase deficiency based on a morning salivary 17-hydroxyprogesterone screening test: a small sample study. J. Clin. Endocrinol. Metab. 70(6), 1662–1667 (1990). doi:10.1210/jcem-70-6-1662

    CAS  PubMed  Google Scholar 

  40. J. Fitness, N. Dixit, D. Webster, T. Torresani, R. Pergolizzi, P.W. Speiser, D.J. Day, Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 84(3), 960–966 (1999). doi:10.1210/jcem.84.3.5550

    CAS  PubMed  Google Scholar 

  41. B. Ezquieta, M.L. Ruano, E. Dulin, D.R. Arnao, A. Rodriguez, Prevalence of frequent recessive diseases in the Spanish population through DNA analyses on samples from the neonatal screening. Med. Clin. 125(13), 493–495 (2005)

    Google Scholar 

  42. S.M. Baumgartner-Parzer, P. Nowotny, G. Heinze, W. Waldhausl, H. Vierhapper, Carrier frequency of congenital adrenal hyperplasia (21-hydroxylase deficiency) in a middle European population. J. Clin. Endocrinol. Metab. 90(2), 775–778 (2005). doi:10.1210/jc.2004-1728

    CAS  PubMed  Google Scholar 

  43. A.A. Phedonos, C. Shammas, N. Skordis, T.C. Kyriakides, V. Neocleous, L.A. Phylactou, High carrier frequency of 21-hydroxylase deficiency in Cyprus. Clin. Genet. 84(6), 585–588 (2013). doi:10.1111/cge.12153

    CAS  PubMed  Google Scholar 

  44. A. Wedell, Molecular genetics of 21-hydroxylase deficiency. Endocr. Dev. 20, 80–87 (2011). doi:10.1159/000321223

    CAS  PubMed  Google Scholar 

  45. A. Wedell, A. Thilen, E.M. Ritzen, B. Stengler, H. Luthman, Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J. Clin. Endocrinol. Metab. 78(5), 1145–1152 (1994)

    CAS  PubMed  Google Scholar 

  46. J. Jaaskelainen, A. Levo, R. Voutilainen, J. Partanen, Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well defined population. J. Clin. Endocrinol. Metab. 82(10), 3293–3297 (1997)

    CAS  PubMed  Google Scholar 

  47. R. Marino, P. Ramirez, J. Galeano, N. Perez Garrido, C. Rocco, M. Ciaccio, D.M. Warman, G. Guercio, E. Chaler, M. Maceiras, I. Bergada, M. Gryngarten, V. Balbi, E. Pardes, M.A. Rivarola, A. Belgorosky, Steroid 21-hydroxylase gene mutational spectrum in 454 Argentinean patients: genotype-phenotype correlation in a large cohort of patients with congenital adrenal hyperplasia. Clin. Endocrinol. 75(4), 427–435 (2011). doi:10.1111/j.1365-2265.2011.04123.x

    CAS  Google Scholar 

  48. M.I. New, M. Abraham, B. Gonzalez, M. Dumic, M. Razzaghy-Azar, D. Chitayat, L. Sun, M. Zaidi, R.C. Wilson, T. Yuen, Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. U.S.A. 110(7), 2611–2616 (2013). doi:10.1073/pnas.1300057110

    PubMed Central  CAS  PubMed  Google Scholar 

  49. M. Bidet, C. Bellanne-Chantelot, M.B. Galand-Portier, J.L. Golmard, V. Tardy, Y. Morel, S. Clauin, C. Coussieu, P. Boudou, I. Mowzowicz, A. Bachelot, P. Touraine, F. Kuttenn, Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95(3), 1182–1190 (2010). doi:10.1210/jc.2009-1383

    CAS  PubMed  Google Scholar 

  50. C. Moran, R. Azziz, N. Weintrob, S.F. Witchel, V. Rohmer, D. Dewailly, J.A. Marcondes, M. Pugeat, P.W. Speiser, D. Pignatelli, B.B. Mendonca, T.A. Bachega, H.F. Escobar-Morreale, E. Carmina, F. Fruzzetti, F. Kelestimur, Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. J. Clin. Endocrinol. Metab. 91(9), 3451–3456 (2006). doi:10.1210/jc.2006-0062

    CAS  PubMed  Google Scholar 

  51. A. Stoupa, L. Gonzalez-Briceno, G. Pinto, D. Samara-Boustani, C. Thalassinos, I. Flechtner, J. Beltrand, M. Bidet, A. Simon, M. Piketty, K. Laborde, Y. Morel, C. Bellanne-Chantelot, P. Touraine, M. Polak, Inadequate cortisol response to the tetracosactide (Synacthen(R)) Test in non-classic congenital adrenal hyperplasia: an exception to the rule? Horm. Res. Paediatr. (2015). doi:10.1159/000369901

    PubMed  Google Scholar 

  52. S.F. Witchel, Non-classic congenital adrenal hyperplasia. Steroids 78(8), 747–750 (2013). doi:10.1016/j.steroids.2013.04.010

    CAS  PubMed  Google Scholar 

  53. H. Falhammar, L. Frisen, C. Norrby, A.L. Hirschberg, C. Almqvist, A. Nordenskjold, A. Nordenstrom, Increased mortality in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 99(12), E2715–E2721 (2014). doi:10.1210/jc.2014-2957

  54. H. Falhammar, M. Thoren, Clinical outcomes in the management of congenital adrenal hyperplasia. Endocrine 41(3), 355–373 (2012). doi:10.1007/s12020-011-9591-x

    CAS  PubMed  Google Scholar 

  55. H. Falhammar, H. Filipsson Nystrom, A. Wedell, K. Brismar, M. Thoren, Bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia. Eur. J. Endocrinol. 168(3), 331–341 (2013). doi:10.1530/EJE-12-0865

    CAS  PubMed  Google Scholar 

  56. S. Verma, C. Vanryzin, N. Sinaii, M.S. Kim, L.K. Nieman, S. Ravindran, K.A. Calis, W. Arlt, R.J. Ross, D.P. Merke, A pharmacokinetic and pharmacodynamic study of delayed- and extended-release hydrocortisone (Chronocort) vs. conventional hydrocortisone (Cortef) in the treatment of congenital adrenal hyperplasia. Clin. Endocrinol. 72(4), 441–447 (2010). doi:10.1111/j.1365-2265.2009.03636.x

    CAS  Google Scholar 

  57. A. Dauber, M. Kellogg, J.A. Majzoub, Monitoring of therapy in congenital adrenal hyperplasia. Clin. Chem. 56(8), 1245–1251 (2010). doi:10.1373/clinchem.2010.146035

    CAS  PubMed  Google Scholar 

  58. P.E. Clayton, W.L. Miller, S.E. Oberfield, E.M. Ritzen, W.G. Sippell, P.W. Speiser, Consensus statement on 21-hydroxylase deficiency from the European society for paediatric endocrinology and the Lawson Wilkins pediatric endocrine society. Horm. Res. 58(4), 188–195 (2002)

    CAS  PubMed  Google Scholar 

  59. I. Nermoen, E.S. Husebye, J. Svartberg, K. Lovas, Subjective health status in men and women with congenital adrenal hyperplasia: a population-based survey in Norway. Eur. J. Endocrinol. 163(3), 453–459 (2010). doi:10.1530/EJE-10-0284

    CAS  PubMed  Google Scholar 

  60. W. Arlt, D.S. Willis, S.H. Wild, N. Krone, E.J. Doherty, S. Hahner, T.S. Han, P.V. Carroll, G.S. Conway, D.A. Rees, R.H. Stimson, B.R. Walker, J.M. Connell, R.J. Ross, Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J. Clin. Endocrinol. Metab. 95(11), 5110–5121 (2010). doi:10.1210/jc.2010-0917

    PubMed Central  CAS  PubMed  Google Scholar 

  61. C.M. Ogilvie, N.S. Crouch, G. Rumsby, S.M. Creighton, L.M. Liao, G.S. Conway, Congenital adrenal hyperplasia in adults: a review of medical, surgical and psychological issues. Clin. Endocrinol. 64(1), 2–11 (2006). doi:10.1111/j.1365-2265.2005.02410.x

    CAS  Google Scholar 

  62. D.P. Merke, Approach to the adult with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 93(3), 653–660 (2008). doi:10.1210/jc.2007-2417

    PubMed Central  CAS  PubMed  Google Scholar 

  63. K. Liivak, V. Tillmann, 24-hour blood pressure profiles in children with congenital adrenal hyperplasia on two different hydrocortisone treatment regimens. J. Pediatr. Endocrinol. Metab. 22(6), 511–517 (2009)

    CAS  PubMed  Google Scholar 

  64. A. Nordenstrom, C. Marcus, M. Axelson, A. Wedell, E.M. Ritzen, Failure of cortisone acetate treatment in congenital adrenal hyperplasia because of defective 11beta-hydroxysteroid dehydrogenase reductase activity. J. Clin. Endocrinol. Metab. 84(4), 1210–1213 (1999)

    CAS  PubMed  Google Scholar 

  65. R.M. Williams, A. Deeb, K.K. Ong, W. Bich, P.R. Murgatroyd, I.A. Hughes, C.L. Acerini, Insulin sensitivity and body composition in children with classical and nonclassical congenital adrenal hyperplasia. Clin. Endocrinol. 72(2), 155–160 (2010). doi:10.1111/j.1365-2265.2009.03587.x

    CAS  Google Scholar 

  66. I. Wiegratz, E. Kutschera, J.H. Lee, C. Moore, U. Mellinger, U.H. Winkler, H. Kuhl, Effect of four different oral contraceptives on various sex hormones and serum-binding globulins. Contraception 67(1), 25–32 (2003)

    CAS  PubMed  Google Scholar 

  67. K. Hagenfeldt, P.O. Janson, G. Holmdahl, H. Falhammar, H. Filipsson, L. Frisen, M. Thoren, A. Nordenskjold, Fertility and pregnancy outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum. Reprod. 23(7), 1607–1613 (2008). doi:10.1093/humrep/den118

    CAS  PubMed  Google Scholar 

  68. R. Krysiak, B. Okopien, The effect of metformin on androgen production in diabetic women with non-classic congenital adrenal hyperplasia. Exp. Clin. Endocrinol. Diabetes 122(10), 568–571 (2014). doi:10.1055/s-0034-1382048

    CAS  PubMed  Google Scholar 

  69. R. Krysiak, B. Okopien, The effect of simvastatin treatment on plasma steroid levels in females with non-classic congenital adrenal hyperplasia. Exp. Clin. Endocrinol. Diabetes 121(10), 643–646 (2013). doi:10.1055/s-0033-1355383

    CAS  PubMed  Google Scholar 

  70. J. Jaaskelainen, M. Hippelainen, O. Kiekara, R. Voutilainen, Child rate, pregnancy outcome and ovarian function in females with classical 21-hydroxylase deficiency. Acta Obstet. Gynecol. Scand. 79(8), 687–692 (2000)

    CAS  PubMed  Google Scholar 

  71. R.M. Mulaikal, C.J. Migeon, J.A. Rock, Fertility rates in female patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 316(4), 178–182 (1987). doi:10.1056/NEJM198701223160402

    CAS  PubMed  Google Scholar 

  72. N. Krone, I. Wachter, M. Stefanidou, A.A. Roscher, H.P. Schwarz, Mothers with congenital adrenal hyperplasia and their children: outcome of pregnancy, birth and childhood. Clin. Endocrinol. 55(4), 523–529 (2001). 1359 [pii]

    CAS  Google Scholar 

  73. F. Gastaud, C. Bouvattier, L. Duranteau, R. Brauner, E. Thibaud, F. Kutten, P. Bougneres, Impaired sexual and reproductive outcomes in women with classical forms of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 92(4), 1391–1396 (2007). doi:10.1210/jc.2006-1757

    CAS  PubMed  Google Scholar 

  74. A. Strandqvist, H. Falhammar, P. Lichtenstein, A.L. Hirschberg, A. Wedell, C. Norrby, A. Nordenskjold, L. Frisen, A. Nordenstrom, Suboptimal psychosocial outcomes in patients with congenital adrenal hyperplasia: epidemiological studies in a nonbiased national cohort in Sweden. J. Clin. Endocrinol. Metab. 99(4), 1425–1432 (2014). doi:10.1210/jc.2013-3326

    CAS  PubMed  Google Scholar 

  75. A. Casteras, P. De Silva, G. Rumsby, G.S. Conway, Reassessing fecundity in women with classical congenital adrenal hyperplasia (CAH): normal pregnancy rate but reduced fertility rate. Clin. Endocrinol. 70(6), 833–837 (2009). doi:10.1111/j.1365-2265.2009.03563.x

    Google Scholar 

  76. M.D. Birnbaum, L.I. Rose, Late onset adrenocortical hydroxylase deficiencies associated with menstrual dysfunction. Obstet. Gynecol. 63(4), 445–451 (1984)

    CAS  PubMed  Google Scholar 

  77. S. Feldman, L. Billaud, J.C. Thalabard, M.C. Raux-Demay, I. Mowszowicz, F. Kuttenn, P. Mauvais-Jarvis, Fertility in women with late-onset adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 74(3), 635–639 (1992). doi:10.1210/jcem.74.3.1310999

    CAS  PubMed  Google Scholar 

  78. J.C. Lo, M.M. Grumbach, Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 30(1), 207–229 (2001)

    CAS  PubMed  Google Scholar 

  79. L. Frisen, A. Nordenstrom, H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, M. Thoren, K. Hagenfeldt, A. Moller, A. Nordenskjold, Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency. J. Clin. Endocrinol. Metab. 94(9), 3432–3439 (2009). doi:10.1210/jc.2009-0636

    CAS  PubMed  Google Scholar 

  80. H.F. Meyer-Bahlburg, C. Dolezal, S.W. Baker, M.I. New, Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Arch. Sex. Behav. 37(1), 85–99 (2008). doi:10.1007/s10508-007-9265-1

    PubMed  Google Scholar 

  81. H. Falhammar, Non-classic congenital adrenal hyperplasia due to 21-hydoxylase deficiency as a cause of infertility and miscarriages. N. Z. Med. J. 123(1312), 77–80 (2010)

    PubMed  Google Scholar 

  82. T. Hirvikoski, A. Nordenstrom, T. Lindholm, F. Lindblad, E.M. Ritzen, A. Wedell, S. Lajic, Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J. Clin. Endocrinol. Metab. 92(2), 542–548 (2007). doi:10.1210/jc.2006-1340

    CAS  PubMed  Google Scholar 

  83. A. de Vries, M.C. Holmes, A. Heijnis, J.V. Seier, J. Heerden, J. Louw, S. Wolfe-Coote, M.J. Meaney, N.S. Levitt, J.R. Seckl, Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J. Clin. Investig. 117(4), 1058–1067 (2007). doi:10.1172/JCI30982

    PubMed Central  PubMed  Google Scholar 

  84. T. Hirvikoski, T. Lindholm, S. Lajic, A. Nordenstrom, Gender role behaviour in prenatally dexamethasone-treated children at risk for congenital adrenal hyperplasia–a pilot study. Acta Paediatr. 100(9), e112–e119 (2011). doi:10.1111/j.1651-2227.2011.02260.x

    PubMed  Google Scholar 

  85. J. Jaaskelainen, O. Kiekara, M. Hippelainen, R. Voutilainen, Pituitary gonadal axis and child rate in males with classical 21-hydroxylase deficiency. J. Endocrinol. Invest. 23(1), 23–27 (2000)

    CAS  PubMed  Google Scholar 

  86. H. Falhammar, H.F. Nystrom, U. Ekstrom, S. Granberg, A. Wedell, M. Thoren, Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia. Eur. J. Endocrinol. 166(3), 441–449 (2012). doi:10.1530/EJE-11-0828

    PubMed Central  CAS  PubMed  Google Scholar 

  87. C. Bouvattier, L. Esterle, P. Renoult-Pierre, A.B. de la Perriere, F. Illouz, V. Kerlan, V. Pascal-Vigneron, D. Drui, S. Christin-Maitre, F. Galland, T. Brue, Y. Reznik, F. Schillo, D. Pinsard, X. Piguel, G. Chabrier, B. Decoudier, P. Emy, I. Tauveron, M.L. Raffin-Sanson, J. Bertherat, J.M. Kuhn, P. Caron, M. Cartigny, O. Chabre, D. Dewailly, Y. Morel, P. Touraine, V. Tardy-Guidollet, J. Young, Clinical outcome, hormonal status, gonadotrope axis and testicular function in 219 adult men born with classic 21-hydroxylase deficiency. A French national survey. J. Clin. Endocrinol. Metab., jc20144124 (2015). doi:10.1210/jc.2014-4124

  88. N.M. Stikkelbroeck, B.J. Otten, A. Pasic, G.J. Jager, C.G. Sweep, K. Noordam, A.R. Hermus, High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86(12), 5721–5728 (2001)

    CAS  PubMed  Google Scholar 

  89. M.S. Cabrera, M.G. Vogiatzi, M.I. New, Long term outcome in adult males with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86(7), 3070–3078 (2001)

    CAS  PubMed  Google Scholar 

  90. N. Reisch, L. Flade, M. Scherr, M. Rottenkolber, F. Pedrosa Gil, M. Bidlingmaier, H. Wolff, H.P. Schwarz, M. Quinkler, F. Beuschlein, M. Reincke, High prevalence of reduced fecundity in men with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 94(5), 1665–1670 (2009). doi:10.1210/jc.2008-1414

    CAS  PubMed  Google Scholar 

  91. M.D. Urban, P.A. Lee, C.J. Migeon, Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N. Engl. J. Med. 299(25), 1392–1396 (1978). doi:10.1056/NEJM197812212992505

    CAS  PubMed  Google Scholar 

  92. H.L. Claahsen-van der Grinten, B.J. Otten, M.M. Stikkelbroeck, F.C. Sweep, A.R. Hermus, Testicular adrenal rest tumours in congenital adrenal hyperplasia. Best practice & research. Clin. Endocrinol. Metab. 23(2), 209–220 (2009). doi:10.1016/j.beem.2008.09.007

    CAS  Google Scholar 

  93. T.H. Johannsen, C.P. Ripa, E.L. Mortensen, K.M. Main, Quality of life in 70 women with disorders of sex development. Eur. J. Endocrinol. 155(6), 877–885 (2006). doi:10.1530/eje.1.02294

    CAS  PubMed  Google Scholar 

  94. N. Reisch, S. Hahner, B. Bleicken, L. Flade, F. Pedrosa Gil, M. Loeffler, M. Ventz, A. Hinz, F. Beuschlein, B. Allolio, M. Reincke, M. Quinkler, Quality of life is less impaired in adults with congenital adrenal hyperplasia because of 21-hydroxylase deficiency than in patients with primary adrenal insufficiency. Clinical Endocrinol. 74(2), 166–173 (2011). doi:10.1111/j.1365-2265.2010.03920.x

    Google Scholar 

  95. D.L. Gilban, P.A. Alves Junior, I.C. Beserra, Health related quality of life of children and adolescents with congenital adrenal hyperplasia in Brazil. Health Qual. Life Outcomes 12, 107 (2014). doi:10.1186/s12955-014-0107-2

    PubMed Central  PubMed  Google Scholar 

  96. M.F. Mnif, M. Kamoun, F. Mnif, N. Charfi, N. Kallel, B. Ben Naceur, N. Rekik, Z. Mnif, M.H. Sfar, M.T. Sfar, M. Hachicha, L.A. Keskes, M. Abid, Long-term outcome of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Am. J. Med. Sci. 344(5), 363–373 (2012). doi:10.1097/MAJ.0b013e31824369e4

    PubMed  Google Scholar 

  97. U. Kuhnle, M. Bullinger, H.P. Schwarz, The quality of life in adult female patients with congenital adrenal hyperplasia: a comprehensive study of the impact of genital malformations and chronic disease on female patients life. Eur. J. Pediatr. 154(9), 708–716 (1995)

    CAS  PubMed  Google Scholar 

  98. M.A. Malouf, A.G. Inman, A.G. Carr, J. Franco, L.M. Brooks, Health-related quality of life, mental health and psychotherapeutic considerations for women diagnosed with a disorder of sexual development: congenital adrenal hyperplasia. Int. J. Pediatr. Endocrinol. 2010, 253465 (2010). doi:10.1155/2010/253465

    PubMed Central  PubMed  Google Scholar 

  99. H. Falhammar, H.F. Nystrom, M. Thoren, Quality of life, social situation, and sexual satisfaction, in adult males with congenital adrenal hyperplasia. Endocrine 47(1), 299–307 (2014). doi:10.1007/s12020-013-0161-2

    CAS  PubMed  Google Scholar 

  100. Jaaskelainen, R. Voutilainen, Long-term outcome of classical 21-hydroxylase deficiency: diagnosis, complications and quality of life. Acta Paediatr. 89(2), 183–187 (2000)

    CAS  PubMed  Google Scholar 

  101. T.S. Han, N. Krone, D.S. Willis, G.S. Conway, S. Hahner, D.A. Rees, R.H. Stimson, B.R. Walker, W. Arlt, R.J. Ross, Quality of life in adults with congenital adrenal hyperplasia relates to glucocorticoid treatment, adiposity and insulin resistance: United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE). Eur. J. Endocrinol. 168(6), 887–893 (2013). doi:10.1530/EJE-13-0128

    PubMed Central  CAS  PubMed  Google Scholar 

  102. A. Nordenskjold, G. Holmdahl, L. Frisen, H. Falhammar, H. Filipsson, M. Thoren, P.O. Janson, K. Hagenfeldt, Type of mutation and surgical procedure affect long-term quality of life for women with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 93(2), 380–386 (2008). doi:10.1210/jc.2007-0556

    PubMed  Google Scholar 

  103. A. Nordenstrom, L. Frisen, H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, M. Thoren, K. Hagenfeldt, A. Nordenskjold, Sexual function and surgical outcome in women with congenital adrenal hyperplasia due to CYP21A2 deficiency: clinical perspective and the patients’ perception. J. Clin. Endocrinol. Metab. 95(8), 3633–3640 (2010). doi:10.1210/jc.2009-2639

    PubMed  Google Scholar 

  104. H. Falhammar, A. Butwicka, M. Landen, P. Lichtenstein, A. Nordenskjold, A. Nordenstrom, L. Frisen, Increased psychiatric morbidity in men with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 99(3), E554–E560 (2014). doi:10.1210/jc.2013-3707

    CAS  PubMed  Google Scholar 

  105. E. Canalis, G. Mazziotti, A. Giustina, J.P. Bilezikian, Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos. Int. 18(10), 1319–1328 (2007). doi:10.1007/s00198-007-0394-0

    CAS  PubMed  Google Scholar 

  106. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92(12), 4643–4649 (2007). doi:10.1210/jc.2007-0744

    CAS  PubMed  Google Scholar 

  107. A. Bachelot, G. Plu-Bureau, E. Thibaud, K. Laborde, G. Pinto, D. Samara, C. Nihoul-Fekete, F. Kuttenn, M. Polak, P. Touraine, Long-term outcome of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. 67(6), 268–276 (2007). doi:10.1159/000098017

    CAS  PubMed  Google Scholar 

  108. J.A. King, A.B. Wisniewski, B.J. Bankowski, K.A. Carson, H.A. Zacur, C.J. Migeon, Long-term corticosteroid replacement and bone mineral density in adult women with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 91(3), 865–869 (2006). doi:10.1210/jc.2005-0745

    CAS  PubMed  Google Scholar 

  109. J. Jaaskelainen, R. Voutilainen, Bone mineral density in relation to glucocorticoid substitution therapy in adult patients with 21-hydroxylase deficiency. Clin. Endocrinol. 45(6), 707–713 (1996)

    CAS  Google Scholar 

  110. K. Hagenfeldt, E. Martin Ritzen, H. Ringertz, J. Helleday, K. Carlstrom, Bone mass and body composition of adult women with congenital virilizing 21-hydroxylase deficiency after glucocorticoid treatment since infancy. Eur. J. Endocrinol. 143(5), 667–671 (2000)

    CAS  PubMed  Google Scholar 

  111. M. Sciannamblo, G. Russo, D. Cuccato, G. Chiumello, S. Mora, Reduced bone mineral density and increased bone metabolism rate in young adult patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91(11), 4453–4458 (2006). doi:10.1210/jc.2005-2823

    CAS  PubMed  Google Scholar 

  112. D. El-Maouche, S. Collier, M. Prasad, J.C. Reynolds, D.P. Merke, Cortical bone mineral density in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. (2014). doi:10.1111/cen.12507

    Google Scholar 

  113. I. Nermoen, I. Bronstad, K.J. Fougner, J. Svartberg, M. Oksnes, E.S. Husebye, K. Lovas, Genetic, anthropometric and metabolic features of adult Norwegian patients with 21-hydroxylase deficiency. Eur. J. Endocrinol. 167(4), 507–516 (2012). doi:10.1530/EJE-12-0196

    CAS  PubMed  Google Scholar 

  114. K.R. Koetz, M. Ventz, S. Diederich, M. Quinkler, Bone mineral density is not significantly reduced in adult patients on low-dose glucocorticoid replacement therapy. J. Clin. Endocrinol. Metab. 97(1), 85–92 (2012). doi:10.1210/jc.2011-2036

    CAS  PubMed  Google Scholar 

  115. C.Y. Guo, A.P. Weetman, R. Eastell, Bone turnover and bone mineral density in patients with congenital adrenal hyperplasia. Clin. Endocrinol. 45(5), 535–541 (1996)

    CAS  Google Scholar 

  116. S. Mora, F. Saggion, G. Russo, G. Weber, A. Bellini, C. Prinster, G. Chiumello, Bone density in young patients with congenital adrenal hyperplasia. Bone 18(4), 337–340 (1996). 8756328296000038 [pii]

    CAS  PubMed  Google Scholar 

  117. N.M. Stikkelbroeck, W.J. Oyen, G.J. van der Wilt, A.R. Hermus, B.J. Otten, Normal bone mineral density and lean body mass, but increased fat mass, in young adult patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 88(3), 1036–1042 (2003)

    CAS  PubMed  Google Scholar 

  118. P. Christiansen, C. Molgaard, J. Muller, Normal bone mineral content in young adults with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. 61(3), 133–136 (2004). doi:10.1159/000075588

    CAS  PubMed  Google Scholar 

  119. Z. Chakhtoura, A. Bachelot, D. Samara-Boustani, J.C. Ruiz, B. Donadille, J. Dulon, S. Christin-Maitre, C. Bouvattier, M.C. Raux-Demay, P. Bouchard, J.C. Carel, J. Leger, F. Kuttenn, M. Polak, P. Touraine, Impact of total cumulative glucocorticoid dose on bone mineral density in patients with 21-hydroxylase deficiency. Eur. J. Endocrinol. 158(6), 879–887 (2008). doi:10.1530/EJE-07-0887

    CAS  PubMed  Google Scholar 

  120. C. Paganini, G. Radetti, C. Livieri, V. Braga, D. Migliavacca, S. Adami, Height, bone mineral density and bone markers in congenital adrenal hyperplasia. Horm. Res. 54(4), 164–168 (2000)

    CAS  PubMed  Google Scholar 

  121. A.J. Swerdlow, C.D. Higgins, C.G. Brook, D.B. Dunger, P.C. Hindmarsh, D.A. Price, M.O. Savage, Mortality in patients with congenital adrenal hyperplasia: a cohort study. J. Pediatr. 133(4), 516–520 (1998)

    CAS  PubMed  Google Scholar 

  122. J. Helleday, B. Siwers, E.M. Ritzen, K. Carlstrom, Subnormal androgen and elevated progesterone levels in women treated for congenital virilizing 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 76(4), 933–936 (1993)

    CAS  PubMed  Google Scholar 

  123. R.E. Cornean, P.C. Hindmarsh, C.G. Brook, Obesity in 21-hydroxylase deficient patients. Arch. Dis. Child. 78(3), 261–263 (1998)

    PubMed Central  CAS  PubMed  Google Scholar 

  124. T.M. Volkl, D. Simm, C. Beier, H.G. Dorr, Obesity among children and adolescents with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 117(1), e98–e105 (2006). doi:10.1542/peds.2005-1005

    PubMed  Google Scholar 

  125. T.M. Volkl, D. Simm, A. Korner, W. Rascher, W. Kiess, J. Kratzsch, H.G. Dorr, Does an altered leptin axis play a role in obesity among children and adolescents with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency? Eur. J. Endocrinol. 160(2), 239–247 (2009). doi:10.1530/EJE-08-0770

    PubMed  Google Scholar 

  126. H.J. Zhang, J. Yang, M.N. Zhang, C.Q. Liu, M. Xu, X.J. Li, S.Y. Yang, X.Y. Li, Metabolic disorders in newly diagnosed young adult female patients with simple virilizing 21-hydroxylase deficiency. Endocrine 38(2), 260–265 (2010). doi:10.1007/s12020-010-9382-9

    CAS  PubMed  Google Scholar 

  127. M. Gussinye, A. Carrascosa, N. Potau, M. Enrubia, E. Vicens-Calvet, L. Ibanez, D. Yeste, Bone mineral density in prepubertal and in adolescent and young adult patients with the salt-wasting form of congenital adrenal hyperplasia. Pediatrics 100(4), 671–674 (1997)

    CAS  PubMed  Google Scholar 

  128. F.J. Cameron, B. Kaymakci, E.A. Byrt, P.R. Ebeling, G.L. Warne, J.D. Wark, Bone mineral density and body composition in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 80(7), 2238–2243 (1995)

    CAS  PubMed  Google Scholar 

  129. P. Sartorato, E. Zulian, S. Benedini, B. Mariniello, F. Schiavi, F. Bilora, G. Pozzan, N. Greggio, A. Pagnan, F. Mantero, C. Scaroni, Cardiovascular risk factors and ultrasound evaluation of intima-media thickness at common carotids, carotid bulbs, and femoral and abdominal aorta arteries in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92(3), 1015–1018 (2007). doi:10.1210/jc.2006-1711

    CAS  PubMed  Google Scholar 

  130. E. Charmandari, M. Weise, S.R. Bornstein, G. Eisenhofer, M.F. Keil, G.P. Chrousos, D.P. Merke, Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: potential clinical implications. J. Clin. Endocrinol. Metab. 87(5), 2114–2120 (2002)

    CAS  PubMed  Google Scholar 

  131. F. Saygili, A. Oge, C. Yilmaz, Hyperinsulinemia and insulin insensitivity in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency: the relationship between serum leptin levels and chronic hyperinsulinemia. Horm. Res. 63(6), 270–274 (2005). doi:10.1159/000086363

    CAS  PubMed  Google Scholar 

  132. A. Zimmermann, P. Grigorescu-Sido, C. AlKhzouz, K. Patberg, S. Bucerzan, E. Schulze, T. Zimmermann, H. Rossmann, H.C. Geiss, K.J. Lackner, M.M. Weber, Alterations in lipid and carbohydrate metabolism in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. Paediatr. 74(1), 41–49 (2010). doi:10.1159/000313368

    CAS  PubMed  Google Scholar 

  133. P.W. Speiser, J. Serrat, M.I. New, J.M. Gertner, Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 75(6), 1421–1424 (1992)

    CAS  PubMed  Google Scholar 

  134. F.J. Paula, L.M. Gouveia, G.M. Paccola, C.E. Piccinato, A.C. Moreira, M.C. Foss, Androgen-related effects on peripheral glucose metabolism in women with congenital adrenal hyperplasia. Horm. Metab. Res. 26(11), 552–556 (1994). doi:10.1055/s-2007-1001755

    CAS  PubMed  Google Scholar 

  135. N.H. Amr, A.Y. Ahmed, Y.A. Ibrahim, Carotid intima media thickness and other cardiovascular risk factors in children with congenital adrenal hyperplasia. J. Endocrinol. Invest. (2014). doi:10.1007/s40618-014-0148-8

    PubMed  Google Scholar 

  136. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjold, K. Hagenfeldt, M. Thoren, Increased liver enzymes in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. J. 56(4), 601–608 (2009). JST.JSTAGE/endocrj/K08E − 312 [pii]

    CAS  PubMed  Google Scholar 

  137. F. Bayraktar, D. Dereli, A.G. Ozgen, C. Yilmaz, Plasma homocysteine levels in polycystic ovary syndrome and congenital adrenal hyperplasia. Endocr. J. 51(6), 601–608 (2004)

    CAS  PubMed  Google Scholar 

  138. C. Livingstone, M. Collison, Sex steroids and insulin resistance. Clin. Sci. 102(2), 151–166 (2002)

    CAS  PubMed  Google Scholar 

  139. T.H. Jones, Effects of testosterone on Type 2 diabetes and components of the metabolic syndrome. J. Diabetes 2(3), 146–156 (2010). doi:10.1111/j.1753-0407.2010.00085.x

    CAS  PubMed  Google Scholar 

  140. D. Botero, A. Arango, M. Danon, F. Lifshitz, Lipid profile in congenital adrenal hyperplasia. Metab. Clin. Exp. 49(6), 790–793 (2000). doi:10.1053/meta.2000.6261

    CAS  PubMed  Google Scholar 

  141. A.G. Rockall, S.A. Sohaib, D. Evans, G. Kaltsas, A.M. Isidori, J.P. Monson, G.M. Besser, A.B. Grossman, R.H. Reznek, Hepatic steatosis in Cushing’s syndrome: a radiological assessment using computed tomography. Eur. J. Endocrinol. 149(6), 543–548 (2003)

    CAS  PubMed  Google Scholar 

  142. S. Itoh, M. Igarashi, Y. Tsukada, A. Ichinoe, Nonalcoholic fatty liver with alcoholic hyalin after long-term glucocorticoid therapy. Acta Hepato-gastroenterol. 24(6), 415–418 (1977)

    CAS  Google Scholar 

  143. T.L. Setji, N.D. Holland, L.L. Sanders, K.C. Pereira, A.M. Diehl, A.J. Brown, Nonalcoholic steatohepatitis and nonalcoholic Fatty liver disease in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91(5), 1741–1747 (2006). doi:10.1210/jc.2005-2774

    CAS  PubMed  Google Scholar 

  144. C.F. Mooij, J.M. Kroese, F.C. Sweep, A.R. Hermus, C.J. Tack, Adult patients with congenital adrenal hyperplasia have elevated blood pressure but otherwise a normal cardiovascular risk profile. PLoS ONE 6(9), e24204 (2011). doi:10.1371/journal.pone.0024204

    PubMed Central  CAS  PubMed  Google Scholar 

  145. T.M. Volkl, D. Simm, J. Dotsch, W. Rascher, H.G. Dorr, Altered 24-hour blood pressure profiles in children and adolescents with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91(12), 4888–4895 (2006). doi:10.1210/jc.2006-1069

    PubMed  Google Scholar 

  146. K.S. de Silva, S. Kanumakala, J.J. Brown, C.L. Jones, G.L. Warne, 24-hour ambulatory blood pressure profile in patients with congenital adrenal hyperplasia—a preliminary report. J. Pediatr. Endocrinol. Metab. 17(8), 1089–1095 (2004)

    PubMed  Google Scholar 

  147. W. Hoepffner, A. Herrmann, H. Willgerodt, E. Keller, Blood pressure in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Pediatr. Endocrinol. Metab. 19(5), 705–711 (2006)

    CAS  PubMed  Google Scholar 

  148. T.D. Nebesio, E.A. Eugster, Observation of hypertension in children with 21-hydroxylase deficiency: a preliminary report. Endocrine 30(3), 279–282 (2006). doi:10.1007/s12020-006-0005-4

    CAS  PubMed  Google Scholar 

  149. E.F. Roche, E. Charmandari, M.T. Dattani, P.C. Hindmarsh, Blood pressure in children and adolescents with congenital adrenal hyperplasia (21-hydroxylase deficiency): a preliminary report. Clin. Endocrinol. 58(5), 589–596 (2003)

    Google Scholar 

  150. C.F. Mooij, L. Kapusta, B.J. Otten, H.L. Claahsen-van der Grinten, Blood pressure in the first year of life in children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a pilot study. Horm. Res. Paediatr. 74(5), 328–332 (2010). doi:10.1159/000308891

    CAS  PubMed  Google Scholar 

  151. J. Harrington, A.S. Pena, R. Gent, C. Hirte, J. Couper, Adolescents with congenital adrenal hyperplasia because of 21-hydroxylase deficiency have vascular dysfunction. Clin. Endocrinol. 76(6), 837–842 (2012). doi:10.1111/j.1365-2265.2011.04309.x

    CAS  Google Scholar 

  152. W.B. Kannel, C. Kannel, R.S. Paffenbarger Jr, L.A. Cupples, Heart rate and cardiovascular mortality: the Framingham Study. Am. Heart J. 113(6), 1489–1494 (1987)

    CAS  PubMed  Google Scholar 

  153. A.G. Shaper, G. Wannamethee, P.W. Macfarlane, M. Walker, Heart rate, ischaemic heart disease, and sudden cardiac death in middle-aged British men. Br. Heart J. 70(1), 49–55 (1993)

    PubMed Central  CAS  PubMed  Google Scholar 

  154. G.B. Mensink, H. Hoffmeister, The relationship between resting heart rate and all-cause, cardiovascular and cancer mortality. Eur. Heart J. 18(9), 1404–1410 (1997)

    CAS  PubMed  Google Scholar 

  155. M. Weise, S.L. Mehlinger, B. Drinkard, E. Rawson, E. Charmandari, M. Hiroi, G. Eisenhofer, J.A. Yanovski, G.P. Chrousos, D.P. Merke, Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glucose elevation in response to high-intensity exercise. J. Clin. Endocrinol. Metab. 89(2), 591–597 (2004)

    CAS  PubMed  Google Scholar 

  156. F.G. Riepe, N. Krone, S.N. Kruger, F.C. Sweep, J.W. Lenders, J. Dotsch, H. Monig, W.G. Sippell, C.J. Partsch, Absence of exercise-induced leptin suppression associated with insufficient epinephrine reserve in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Exp. Clin. Endocrinol. Diabetes 114(3), 105–110 (2006). doi:10.1055/s-2005-865836

    CAS  PubMed  Google Scholar 

  157. L. Green-Golan, C. Yates, B. Drinkard, C. VanRyzin, G. Eisenhofer, M. Weise, D.P. Merke, Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glycemic control during prolonged moderate-intensity exercise. J. Clin. Endocrinol. Metab. 92(8), 3019–3024 (2007). doi:10.1210/jc.2007-0493

    CAS  PubMed  Google Scholar 

  158. I. Nermoen, J. Rorvik, S.H. Holmedal, D.L. Hykkerud, K.J. Fougner, J. Svartberg, E.S. Husebye, K. Lovas, High frequency of adrenal myelolipomas and testicular adrenal rest tumours in adult norwegian patients with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. (2011). doi:10.1111/j.1365-2265.2011.04151.x

    Google Scholar 

  159. N. Reisch, M. Scherr, L. Flade, M. Bidlingmaier, H.P. Schwarz, U. Muller-Lisse, M. Reincke, M. Quinkler, F. Beuschlein, Total adrenal volume but not testicular adrenal rest tumor volume is associated with hormonal control in patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95(5), 2065–2072 (2010). doi:10.1210/jc.2009-1929

    CAS  PubMed  Google Scholar 

  160. S. Jaresch, E. Kornely, H.K. Kley, R. Schlaghecke, Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 74(3), 685–689 (1992)

    CAS  PubMed  Google Scholar 

  161. S.C. Duck, Malignancy associated with congenital adrenal hyperplasia. J. Pediatr. 99(3), 423–424 (1981)

    CAS  PubMed  Google Scholar 

  162. A. Varan, S. Unal, S. Ruacan, S. Vidinlisan, Adrenocortical carcinoma associated with adrenogenital syndrome in a child. Med. Pediatr. Oncol. 35(1), 88–90 (2000)

    CAS  PubMed  Google Scholar 

  163. H.L. Claahsen-van der Grinten, B.J. Otten, F.C. Sweep, P.N. Span, H.A. Ross, E.J. Meuleman, A.R. Hermus, Testicular tumors in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency show functional features of adrenocortical tissue. J. Clin. Endocrinol. Metab. 92(9), 3674–3680 (2007). doi:10.1210/jc.2007-0337

    CAS  PubMed  Google Scholar 

  164. E.E. Smeets, P.N. Span, van A.E. Herwaarden, R.A. Wevers, A.R. Hermus, F.C. Sweep, H.L. Claahsen-van der Grinten, Molecular characterization of testicular adrenal rest tumors in congenital adrenal hyperplasia; lesions with both adrenocortical and leydig cell features. J. Clin. Endocrinol. Metab., jc20142036 (2014). doi:10.1210/jc.2014-2036

  165. H.L. Claahsen-van der Grinten, F.C. Sweep, J.G. Blickman, A.R. Hermus, B.J. Otten, Prevalence of testicular adrenal rest tumours in male children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur. J. Endocrinol. 157(3), 339–344 (2007). doi:10.1530/EJE-07-0201

    CAS  PubMed  Google Scholar 

  166. A. Martinez-Aguayo, A. Rocha, N. Rojas, C. Garcia, R. Parra, M. Lagos, L. Valdivia, H. Poggi, A. Cattani, Testicular adrenal rest tumors and Leydig and Sertoli cell function in boys with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 92(12), 4583–4589 (2007). doi:10.1210/jc.2007-0383

    CAS  PubMed  Google Scholar 

  167. D.R. Shanklin, A.P. Richardson Jr, G. Rothstein, Testicular hilar nodules in adrenogenital syndrome. The nature of the nodules. Am. J. Dis. Child. 106, 243–250 (1963)

    CAS  PubMed  Google Scholar 

  168. H.L. Claahsen-van der Grinten, F. Dehzad, K. Kamphuis-van Ulzen, C.L. de Korte, Increased prevalence of testicular adrenal rest tumours during adolescence in congenital adrenal hyperplasia. Horm. Res. Paediatr. 82(4), 238–244 (2014). doi:10.1159/000365570

    CAS  PubMed  Google Scholar 

  169. N.A. Avila, A. Premkumar, T.H. Shawker, J.V. Jones, L. Laue, G.B. Cutler Jr, Testicular adrenal rest tissue in congenital adrenal hyperplasia: findings at Gray-scale and color Doppler US. Radiology 198(1), 99–104 (1996)

    CAS  PubMed  Google Scholar 

  170. A. Mouritsen, N. Jorgensen, K.M. Main, M. Schwartz, A. Juul, Testicular adrenal rest tumours in boys, adolescents and adult men with congenital adrenal hyperplasia may be associated with the CYP21A2 mutation. Int. J. Androl. 33(3), 521–527 (2010). doi:10.1111/j.1365-2605.2009.00967.x

    CAS  PubMed  Google Scholar 

  171. M.J. Kang, J.H. Kim, S.H. Lee, Y.A. Lee, C.H. Shin, S.W. Yang, The prevalence of testicular adrenal rest tumors and associated factors in postpubertal patients with congenital adrenal hyperplasia caused by 21-hydroxylase deficiency. Endocr. J. 58(6), 501–508 (2011)

    CAS  PubMed  Google Scholar 

  172. N. Reisch, M. Rottenkolber, A. Greifenstein, N. Krone, H. Schmidt, M. Reincke, H.P. Schwarz, F. Beuschlein, Testicular adrenal rest tumors develop independently of long-term disease control: a longitudinal analysis of 50 adult men with congenital adrenal hyperplasia due to classic 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 98(11), E1820–E1826 (2013). doi:10.1210/jc.2012-3181

    CAS  PubMed  Google Scholar 

  173. N.A. Avila, A. Premkumar, D.P. Merke, Testicular adrenal rest tissue in congenital adrenal hyperplasia: comparison of MR imaging and sonographic findings. AJR Am. J. Roentgenol. 172(4), 1003–1006 (1999)

    CAS  PubMed  Google Scholar 

  174. B.R. Walker, S.J. Skoog, B.H. Winslow, D.A. Canning, E.S. Tank, Testis sparing surgery for steroid unresponsive testicular tumors of the adrenogenital syndrome. J. Urol. 157(4), 1460–1463 (1997)

    CAS  PubMed  Google Scholar 

  175. T. Tiryaki, Z. Aycan, S. Hucumenoglu, H. Atayurt, Testis sparing surgery for steroid unresponsive testicular tumors of the congenital adrenal hyperplasia. Pediatr. Surg. Int. 21(10), 853–855 (2005). doi:10.1007/s00383-005-1547-x

    PubMed  Google Scholar 

  176. H.L. Claahsen-van der Grinten, B.J. Otten, S. Takahashi, E.J. Meuleman, C. Hulsbergen-van de Kaa, F.C. Sweep, A.R. Hermus, Testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia: evaluation of pituitary-gonadal function before and after successful testis-sparing surgery in eight patients. J. Clin. Endocrinol. Metab. 92(2), 612–615 (2007). doi:10.1210/jc.2006-1311

    CAS  PubMed  Google Scholar 

  177. H. Selye, H. Stone, Hormonally induced transformation of adrenal into myeloid tissue. Am. J. Pathol. 26(2), 211–233 (1950)

    PubMed Central  CAS  PubMed  Google Scholar 

  178. S.C. McGeoch, S. Olson, Z.H. Krukowski, J.S. Bevan, Giant bilateral myelolipomas in a man with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 97(2), 343–344 (2012). doi:10.1210/jc.2011-2373

    CAS  PubMed  Google Scholar 

  179. S.M. Baumgartner-Parzer, S. Pauschenwein, W. Waldhausl, K. Polzler, P. Nowotny, H. Vierhapper, Increased prevalence of heterozygous 21-OH germline mutations in patients with adrenal incidentalomas. Clin. Endocrinol. 56(6), 811–816 (2002)

    CAS  Google Scholar 

  180. A. Patocs, M. Toth, C. Barta, M. Sasvari-Szekely, I. Varga, N. Szucs, C. Jakab, E. Glaz, K. Racz, Hormonal evaluation and mutation screening for steroid 21-hydroxylase deficiency in patients with unilateral and bilateral adrenal incidentalomas. Eur. J. Endocrinol. 147(3), 349–355 (2002)

    CAS  PubMed  Google Scholar 

  181. R.A. Chervin, K. Danilowicz, F. Pitoia, R.M. Gomez, O.D. Bruno, A study of 34 cases of adrenal incidentaloma. Medicina 67(4), 341–350 (2007)

    PubMed  Google Scholar 

  182. J. Patrova, I. Jarocka, H. Wahrenberg, H. Falhammar, Clinical outcomes in adrenal incidentaloma—experience from one centre. Endocr. Pract. (2015). doi:10.4158/EP15618.OR

    PubMed  Google Scholar 

  183. L. Barzon, C. Scaroni, N. Sonino, F. Fallo, M. Gregianin, C. Macri, M. Boscaro, Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J. Clin. Endocrinol. Metab. 83(1), 55–62 (1998)

    CAS  PubMed  Google Scholar 

  184. M. Doleschall, J.A. Szabo, J. Pazmandi, A. Szilagyi, K. Koncz, H. Farkas, M. Toth, P. Igaz, E. Glaz, Z. Prohaszka, M. Korbonits, K. Racz, G. Fust, A. Patocs, Common genetic variants of the human steroid 21-hydroxylase gene (CYP21A2) are related to differences in circulating hormone levels. PLoS ONE 9(9), e107244 (2014). doi:10.1371/journal.pone.0107244

    PubMed Central  PubMed  Google Scholar 

  185. S. Nagasaka, K. Kubota, T. Motegi, E. Hayashi, M. Ohta, K. Takahashi, T. Takahashi, Y. Iwasaki, M. Koike, T. Nishikawa, A case of silent 21-hydroxylase deficiency with persistent adrenal insufficiency after removal of an adrenal incidentaloma. Clin. Endocrinol. 44(1), 111–116 (1996)

    CAS  Google Scholar 

  186. M. Hayashi, Y. Kataoka, Y. Sugimura, F. Kato, M. Fukami, T. Ogata, K. Homma, T. Hasegawa, Y. Oiso, H. Sasano, H. Tanaka, A 68-year-old phenotypically male patient with 21-hydroxylase deficiency and concomitant adrenocortical neoplasm producing testosterone and cortisol. Tohoku J. Exp. Med. 231(2), 75–84 (2013)

    CAS  PubMed  Google Scholar 

  187. R. Libe, W. Arlt, E. Louiset, C. Waintrop, J. Guibourdenche, M. Sibony, E. Clauser, L. Groussin, A feminizing adrenocortical carcinoma in the context of a late onset 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 99(12), E2715–E2721 (2014). doi:10.1210/jc.2014-2957

    Google Scholar 

  188. T. Varma, R. Panchani, A. Goyal, R. Maskey, A case of androgen-secreting adrenal carcinoma with non-classical congenital adrenal hyperplasia. Indian J. Endocrinol. Metab. 17(Suppl 1), S243–S245 (2013). doi:10.4103/2230-8210.119585

    PubMed Central  PubMed  Google Scholar 

  189. U. Nygren, M. Sodersten, H. Falhammar, M. Thoren, K. Hagenfeldt, A. Nordenskjold, Voice characteristics in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. 70(1), 18–25 (2009). doi:10.1111/j.1365-2265.2008.03347.x

    Google Scholar 

  190. U. Nygren, H.F. Nystrom, H. Falhammar, K. Hagenfeldt, A. Nordenskjold, M. Sodersten, Voice problems due to virilization in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. 79(6), 859–866 (2013). doi:10.1111/cen.12226

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Magnus Bergvall Foundation, Karolinska Institutet, and the Stockholm County Council.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Falhammar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falhammar, H., Nordenström, A. Nonclassic congenital adrenal hyperplasia due to 21-hydroxylase deficiency: clinical presentation, diagnosis, treatment, and outcome. Endocrine 50, 32–50 (2015). https://doi.org/10.1007/s12020-015-0656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0656-0

Keywords

Navigation