Skip to main content

Advertisement

Log in

γδ Τ cells enhance B cells for antibody production in Hashimoto’s thyroiditis, and retinoic acid induces apoptosis of the γδ Τ cell

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

TCR γδ+ Τ cells are important in the pathogenesis of inflammatory and autoimmune conditions. This study investigated the effect of γδ T cells on autoantibody production in patients with Hashimoto’s thyroiditis (HT). A total of 148 subjects were enrolled, including 99 patients with HT, 5 with simple goiters, and 44 healthy controls. Peripheral blood and thyroid mononuclear cells were subjected to flow cytometric analysis. Thyroid tissues underwent immunofluorescent staining and immunohistochemistry for γδ T cells and anti-thyroid antibody detection. Antibody production was measured by ELISA and automated chemiluminescent immunoassays. And activation and apoptosis of peripheral blood γδT cells and B cells were measured by flow cytometric analysis. The percentage of γδ T cells were greater in thyroid tissue from HT patients than that of goiter patients (n = 5, 5.33 ± 1.20 vs. 2.07 ± 0.44 %; P < 0.05), with the Vδ1+ γδ T cell subset especially dominant. Frequencies of CD69 (8.42 ± 1.08 vs. 1.60 ± 0.38 %, P < 0.001), HLA-DR (58.12 ± 6.36 vs. 37.82 ± 3.70 %, P < 0.05), CD40L (1.58 ± 0.35 vs. 0.15 ± 0.05 %, P < 0.01), and ICOS (2.78 ± 0.66 vs. 0.28 ± 0.13 %, P < 0.01) expressed on γδ T cells from HT patients (n = 19) were significantly increased compared with those of healthy controls (n = 15). More importantly, γδ T cells from HT patients enhanced B cells for antibody production, and all-trans retinoic acid (ATRA) treatment inhibited the effect by inducing apoptosis of γδ Τ cells. γδ Τ cells appear to play an important role in the pathogenesis of HT, and ATRA might be an effective regulator for HT patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.N. Pearce, A.P. Farwell, L.E. Braverman, Thyroiditis. N. Engl. J. Med. 348(26), 2646–2655 (2003)

    Article  PubMed  Google Scholar 

  2. H.E. Takami, R. Miyabe, K. Kameyama, Hashimoto’s thyroiditis. World J. Surg. 32(5), 688–692 (2008)

    Article  PubMed  Google Scholar 

  3. A.P. Weetman, Autoimmune thyroid disease. Autoimmunity 37(4), 337–340 (2004)

    Article  PubMed  CAS  Google Scholar 

  4. C. Zhu, J. Ma, Y. Liu, J. Tong, J. Tian, J. Chen, X. Tang, H. Xu, L. Lu, S. Wang, Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 97(3), 943–950 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. P. Caturegli, A. De Remigis, K. Chuang, M. Dembele, A. Iwama, S. Iwama, Hashimoto’s thyroiditis: celebrating the centennial through the lens of the Johns Hopkins hospital surgical pathology records. Thyroid 23(2), 142–150 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  6. J.C. Ribot, A. Debarros, B. Silva-Santos, Searching for “signal 2”: costimulation requirements of gammadelta T cells. Cell. Mol. Life Sci. 68(14), 2345–2355 (2011)

    Article  PubMed  CAS  Google Scholar 

  7. A.C. Hayday, [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000)

    Article  PubMed  CAS  Google Scholar 

  8. W. Haas, P. Pereira, S. Tonegawa, Gamma/delta cells. Annu. Rev. Immunol. 11, 637–685 (1993)

    Article  PubMed  CAS  Google Scholar 

  9. C. Mao, X. Mou, Y. Zhou, G. Yuan, C. Xu, H. Liu, T. Zheng, J. Tong, S. Wang, D. Chen, Tumor-activated TCR gammadelta (+) T cells from gastric cancer patients induce the antitumor immune response of TCRalphabeta (+) T cells via their antigen-presenting cell-like effects. J. Immunol. Res. 2014, 593562 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  10. D. Su, M. Shen, X. Li, L. Sun, Roles of gammadelta T cells in the pathogenesis of autoimmune diseases. Clin. Dev. Immunol. 2013, 985753 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  11. S. Rajagopalan, T. Zordan, G.C. Tsokos, S.K. Datta, Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD4-8-T helper cell lines that express the gamma delta T-cell antigen receptor. Proc. Natl. Acad. Sci. USA 87(18), 7020–7024 (1990)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. A.A. Horner, H. Jabara, N. Ramesh, R.S. Geha, gamma/delta T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes. J. Exp. Med. 181(3), 1239–1244 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. N. Caccamo, L. Battistini, M. Bonneville, F. Poccia, J.J. Fournie, S. Meraviglia, G. Borsellino, R.A. Kroczek, C. La Mendola, E. Scotet et al., CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J. Immunol. 177(8), 5290–5295 (2006)

    Article  PubMed  CAS  Google Scholar 

  14. M. Mark, N.B. Ghyselinck, P. Chambon, Retinoic acid signalling in the development of branchial arches. Curr. Opin. Genet. Dev. 14(5), 591–598 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. D. Liang, A. Zuo, H. Shao, W.K. Born, R.L. O’Brien, H.J. Kaplan, D. Sun, Retinoic acid inhibits CD25+ dendritic cell expansion and gammadelta T-cell activation in experimental autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 54(5), 3493–3503 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  16. L.A. Mielke, S.A. Jones, M. Raverdeau, R. Higgs, A. Stefanska, J.R. Groom, A. Misiak, L.S. Dungan, C.E. Sutton, G. Streubel et al., Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210(6), 1117–1124 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. A. Yokota, H. Takeuchi, N. Maeda, Y. Ohoka, C. Kato, S.Y. Song, M. Iwata, GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int. Immunol. 21(4), 361–377 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. B. Hoechst, J. Gamrekelashvili, M.P. Manns, T.F. Greten, F. Korangy, Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood 117(24), 6532–6541 (2011)

    Article  PubMed  CAS  Google Scholar 

  19. L. Saurer, K.C. McCullough, A. Summerfield, In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J. Immunol. 179(6), 3504–3514 (2007)

    Article  PubMed  CAS  Google Scholar 

  20. http://www.japanthyroid.jp/en/guidelines.html#chr. Diagnostic guidelines made by The Japan Thyroid Association

  21. M.H. Rho, D.W. Kim, H.P. Hong, Y.M. Park, M.J. Kwon, S.J. Jung, Y.W. Kim, T. Kang, Diagnostic value of antithyroid peroxidase antibody for incidental autoimmune thyroiditis based on histopathologic results. Endocrine 42, 647–652 (2012)

    Article  PubMed  CAS  Google Scholar 

  22. F. Cicone, A. Papa, C. Lauri, A. Tofani, C. Virili, M. Centanni, F. Scopinaro, B. Annibale, Thyro-gastric autoimmunity in patients with differentiated thyroid cancer: a prospective study. Endocrine 49(1), 163–169 (2015)

    Article  PubMed  CAS  Google Scholar 

  23. F. Paolieri, C. Pronzato, M. Battifora, N. Fiorino, G.W. Canonica, M. Bagnasco, Infiltrating gamma/delta T-cell receptor-positive lymphocytes in Hashimoto’s thyroiditis, Graves’ disease and papillary thyroid cancer. J. Endocrinol. Invest. 18(4), 295–298 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. D. Liang, A. Zuo, H. Shao, W.K. Born, R.L. O’Brien, H.J. Kaplan, D. Sun, Retinoic acid inhibits CD25+ dendritic cell expansion and gammadelta T-cell activation in experimental autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 54(5), 3493–3503 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  25. N. Figueroa-Vega, M. Alfonso-Perez, I. Benedicto, F. Sanchez-Madrid, R. Gonzalez-Amaro, M. Marazuela, Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab. 95(2), 953–962 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. M. Marazuela, M.A. Garcia-Lopez, N. Figueroa-Vega, H. de la Fuente, B. Alvarado-Sanchez, A. Monsivais-Urenda, F. Sanchez-Madrid, R. Gonzalez-Amaro, Regulatory T cells in human autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 91(9), 3639–3646 (2006)

    Article  PubMed  CAS  Google Scholar 

  27. I.S. Grewal, R.A. Flavell, CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998)

    Article  PubMed  CAS  Google Scholar 

  28. A. Hutloff, A.M. Dittrich, K.C. Beier, B. Eljaschewitsch, R. Kraft, I. Anagnostopoulos, R.A. Kroczek, ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716), 263–266 (1999)

    Article  PubMed  CAS  Google Scholar 

  29. P. Chambon, A decade of molecular biology of retinoic acid receptors. FASEB J. 10(9), 940–954 (1996)

    PubMed  CAS  Google Scholar 

  30. X. Du, K. Tabeta, N. Mann, K. Crozat, S. Mudd, B. Beutler, An essential role for Rxr alpha in the development of Th2 responses. Eur. J. Immunol. 35(12), 3414–3423 (2005)

    Article  PubMed  CAS  Google Scholar 

  31. T.T. Schug, D.C. Berry, N.S. Shaw, S.N. Travis, N. Noy, Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129(4), 723–733 (2007)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. M.A. Kane, A.E. Folias, C. Wang, J.L. Napoli, Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. FASEB J. 24(3), 823–832 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. S.M. Smith, C.E. Hayes, Contrasting impairments in IgM and IgG responses of vitamin A-deficient mice. Proc. Natl. Acad. Sci. USA 84(16), 5878–5882 (1987)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. K. Morikawa, M. Nonaka, All-trans-retinoic acid accelerates the differentiation of human B lymphocytes maturing into plasma cells. Int. Immunopharmacol. 5(13–14), 1830–1838 (2005)

    Article  PubMed  CAS  Google Scholar 

  35. S.K. Kwok, M.K. Park, M.L. Cho, H.J. Oh, E.M. Park, D.G. Lee, J. Lee, H.Y. Kim, S.H. Park, Retinoic acid attenuates rheumatoid inflammation in mice. J. Immunol. 189(2), 1062–1071 (2012)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (81370889, 81270801) and the Natural Science Foundation of Jiangsu Province (BK20131248, BK20131245).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoming Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zheng, T., Mao, Y. et al. γδ Τ cells enhance B cells for antibody production in Hashimoto’s thyroiditis, and retinoic acid induces apoptosis of the γδ Τ cell. Endocrine 51, 113–122 (2016). https://doi.org/10.1007/s12020-015-0631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0631-9

Keywords

Navigation