Skip to main content

Short-term administration of GW501516 improves inflammatory state in white adipose tissue and liver damage in high-fructose-fed mice through modulation of the renin-angiotensin system

Abstract

High activation of the angiotensin-converting enzyme (ACE)/(angiotensin-II type 1 receptor) AT1r axis is closely linked to pro-inflammatory effects and liver damage. The aim of this study was to evaluate the effects of the short-term administration of GW501516 on pro-inflammatory markers in white adipose tissue (WAT) and hepatic stellate cells (HSCs), lipogenesis and insulin resistance in the liver upon high-fructose diet (HFru)-induced ACE/AT1r axis activation. Three-month-old male C57Bl/6 mice were fed a standard chow diet or a HFru for 8 weeks. Then, the animals were separated randomly into four groups and treated with GW501516 for 3 weeks. Morphological variables, systolic blood pressure, and plasma determinations were analyzed. In the WAT, the ACE/AT1r axis and pro-inflammatory cytokines were assessed, and in the liver, the ACE/AT1r axis, HSCs, fatty acid oxidation, insulin resistance, and AMPK activation were evaluated. The HFru group displayed a high activation of the ACE/AT1r axis in both the WAT and liver; consequently, we detected inflammation and liver damage. Although GW501516 abolished the increased activation of the ACE/AT1r axis in the WAT, no differences were found in the liver. GW501516 blunted the inflammatory state in the WAT and reduced HSC activation in the liver. In addition, GW501516 alleviates damage in the liver by increasing the expression of the genes that regulate beta-oxidation and decreasing the expression of the genes and proteins that are involved in lipogenesis and gluconeogenesis. We conclude that GW501516 may serve as a therapeutic option for the treatment of a highly activated ACE/AT1r axis in WAT and liver.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    R. Weiss, F.R. Kaufman, Metabolic complications of childhood obesity: identifying and mitigating the risk. Diabetes Care 31(Suppl 2), S310–S316 (2008)

    Article  PubMed  Google Scholar 

  2. 2.

    N. Anderson, J. Borlak, Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol. Rev. 60, 311–357 (2008)

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    M. Laville, J.A. Nazare, Diabetes, insulin resistance and sugars. Obes. Rev. 10(Suppl 1), 24–33 (2009)

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    C. Couchepin, K.A. Le, M. Bortolotti, J.A. da Encarnacao, J.B. Oboni, C. Tran et al., Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects. Diabetes Care 31, 1254–1256 (2008)

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    D.I. Jalal, G. Smits, R.J. Johnson, M. Chonchol, Increased fructose associates with elevated blood pressure. J. Am. Soc. Nephrol. 21, 1543–1549 (2010)

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. 6.

    L. Tappy, K.A. Le, Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 90, 23–46 (2010)

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    S.H. Santos, L.R. Fernandes, C.S. Pereira, A.L. Guimaraes, A.M. de Paula, M.J. Campagnole-Santos et al., Increased circulating angiotensin-(1–7) protects white adipose tissue against development of a proinflammatory state stimulated by a high-fat diet. Regul. Pept. 178, 64–70 (2012)

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    T. Fukui, T. Hirano, Y. Shiraishi, M. Nagashima, M. Adachi, Chronic insulin infusion normalizes blood pressure and the gene expressions of angiotensin II type 1 receptor in fructose-fed rats. Hypertens. Res. 31, 127–133 (2008)

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    S.H. Santos, L.R. Fernandes, E.G. Mario, A.V. Ferreira, L.C. Porto, J.I. Alvarez-Leite et al., Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57, 340–347 (2008)

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    M. Granzow, R. Schierwagen, S. Klein, B. Kowallick, S. Huss, M. Linhart et al., Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 60, 334–348 (2014)

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    K. Uyeda, J.J. Repa, Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4, 107–110 (2006)

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    N. Roglans, L. Vila, M. Farre, M. Alegret, R.M. Sanchez, M. Vazquez-Carrera et al., Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45, 778–788 (2007)

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    L. Serrano-Marco, E. Barroso, I. El Kochairi, X. Palomer, L. Michalik, W. Wahli et al., The peroxisome proliferator-activated receptor (PPAR) beta/delta agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 55, 743–751 (2012)

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    L. Serrano-Marco, R. Rodriguez-Calvo, I. El Kochairi, X. Palomer, L. Michalik, W. Wahli et al., Activation of peroxisome proliferator-activated receptor-beta/-delta (PPAR-beta/-delta) ameliorates insulin signaling and reduces SOCS3 levels by inhibiting STAT3 in interleukin-6-stimulated adipocytes. Diabetes 60, 1990–1999 (2011)

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. 15.

    T. Coll, E. Barroso, D. Alvarez-Guardia, L. Serrano, L. Salvado, M. Merlos et al., The role of peroxisome proliferator-activated receptor beta/delta on the inflammatory basis of metabolic disease. PPAR Res. (2010). doi:10.1155/2010/368467

    PubMed Central  PubMed  Google Scholar 

  16. 16.

    M.J. Zarzuelo, R. Jimenez, P. Galindo, M. Sanchez, A. Nieto, M. Romero et al., Antihypertensive effects of peroxisome proliferator-activated receptor-beta activation in spontaneously hypertensive rats. Hypertension 58, 733–743 (2011)

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    D.K. Kramer, L. Al-Khalili, B. Guigas, Y. Leng, P.M. Garcia-Roves, A. Krook, Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J. Biol. Chem. 282, 19313–19320 (2007)

    Article  PubMed  Google Scholar 

  18. 18.

    D.C. Magliano, T.C. Bargut, S.N. de Carvalho, M.B. Aguila, C.A. Mandarim-de-Lacerda, V. Souza-Mello, Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice. PLoS One 8, 64258 (2013)

    Article  Google Scholar 

  19. 19.

    M. Catta-Preta, L.S. Mendonca, J. Fraulob-Aquino, M.B. Aguila, C.A. Mandarim-de-Lacerda, A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies. Virchows Arch. 459, 477–485 (2011)

    Article  PubMed  Google Scholar 

  20. 20.

    M.B. Aguila, A.R. Pinheiro, L.B. Parente, C.A. Mandarim-de-Lacerda, Dietary effect of different high-fat diet on rat liver stereology. Liver Int. 23, 363–370 (2003)

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    S. Barbosa-da-Silva, N.C. da Silva, M.B. Aguila, C.A. Mandarim-de-Lacerda, Liver damage is not reversed during the lean period in diet-induced weight cycling in mice. Hepatol. Res. 44, 450–459 (2014)

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    A. Spruss, G. Kanuri, S. Wagnerberger, S. Haub, S.C. Bischoff, I. Bergheim, Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104 (2009)

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    A. Schultz, D. Neil, M.B. Aguila, C.A. Mandarim-de-Lacerda, Hepatic adverse effects of fructose consumption independent of overweight/obesity. Int. J. Mol. Sci. 14, 21873–21886 (2013)

    PubMed Central  Article  PubMed  Google Scholar 

  24. 24.

    N. Sharma, L. Li, C.M. Ecelbarger, Sex differences in renal and metabolic responses to a high-fructose diet in mice. Am. J. Physiol. Renal Physiol. 308, F400–F410 (2015)

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    L.A. Bojic, D.E. Telford, M.D. Fullerton, R.J. Ford, B.G. Sutherland, J.Y. Edwards et al., PPARdelta activation attenuates hepatic steatosis in Ldlr−/− mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. J. Lipid Res. 55, 1254–1266 (2014)

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. 26.

    M.A. Prieto, A. Bettaieb, C.R. Lanzi, V.C. Soto, D.J. Perdicaro, C.R. Galmarini et al., Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and in 3T3-L1 adipocytes. Mol. Nutr. Food Res. (2015). doi:10.1002/mnfr.201400631

    Google Scholar 

  27. 27.

    N. Mamikutty, Z.C. Thent, S.R. Sapri, N.N. Sahruddin, M.R. MohdYusof, F. Haji Suhaimi, The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. BioMed Res. Int. 14, 263897 (2014)

    Google Scholar 

  28. 28.

    W.X. Carroll, N.S. Kalupahana, S.L. Booker, N. Siriwardhana, M. Lemieux, A.M. Saxton et al., Angiotensinogen gene silencing reduces markers of lipid accumulation and inflammation in cultured adipocytes. Front. Endocrinol. 4, 10 (2013). doi:10.3389/fendo.2013.00010

    Article  Google Scholar 

  29. 29.

    E.S. Alves, A.A. Haidar, C.D. Quadros, D.S. Carvalho, D. Morgan, M.S. Rocha et al., Angiotensin II-induced JNK activation is mediated by NAD(P)H oxidase in isolated rat pancreatic islets. Regul. Pept. 175, 1–6 (2012)

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    K. Nomura, T. Yamanouchi, The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J. Nutr. Biochem. 23, 203–208 (2012)

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Y. Nagai, Y. Nishio, T. Nakamura, H. Maegawa, R. Kikkawa, A. Kashiwagi, Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am. J. Physiol. Endocrinol. Metab. 282, E1180–E1190 (2002)

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    M.A. Lanaspa, L.G. Sanchez-Lozada, C. Cicerchi, N. Li, C.A. Roncal-Jimenez, T. Ishimoto et al., Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS One 7, e47948 (2012)

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. 33.

    M.F. Abdelmalek, A. Suzuki, C. Guy, A. Unalp-Arida, R. Colvin, R.J. Johnson et al., Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51, 1961–1971 (2010)

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. 34.

    E. Barroso, A.M. Astudillo, J. Balsinde, M. Vazquez-Carrera, PPARbeta/delta Activation prevents hypertriglyceridemia caused by a high fat diet. Involvement of AMPK and PGC-1alpha-Lipin1-PPARalpha pathway. Clin. Investig. Arterioscler. 25, 63–73 (2013). doi:10.1016/j.arteri.2013.01.001

    Article  PubMed  Google Scholar 

  35. 35.

    R.H. Houtkooper, E. Pirinen, J. Auwerx, Sirtuins as regulators of metabolism and health span. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012)

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    C. Canto, J. Auwerx, PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105 (2009)

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. 37.

    B. Viollet, L. Lantier, J. Devin-Leclerc, S. Hebrard, C. Amouyal, R. Mounier et al., Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front. Biosci. 14, 3380–3400 (2009)

    CAS  Article  Google Scholar 

  38. 38.

    Y.G. Suh, W.I. Jeong, Hepatic stellate cells and innate immunity in alcoholic liver disease. World J. Gastroenterol. 17, 2543–2551 (2011)

    PubMed Central  Article  PubMed  Google Scholar 

  39. 39.

    M. Adachi, D.A. Brenner, High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 47, 677–685 (2008)

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Michele Soares and Ms.Gezileia Lau for their technical assistance. This research was supported by the Brazilian agencies CNPq (Brazilian Council of Science and Technology, www.cnpq.br, Grant #302.154/2011-6 to CAMdL, and #306.077/2013-2 to MBA), FAPERJ (Rio de Janeiro Foundation for Research, www.faperj.br, Grant #102.944/2011 to CAMdL, and #103.062/2011), and CAPES (Coordination for Perfectionnement of Superior Personal, www.capes.br, scholarship to DCM).

Conflict of interest

The authors have no conflicts of interest to disclose in this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Mandarim-de-Lacerda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magliano, D.C., Penna-de-Carvalho, A., Vazquez-Carrera, M. et al. Short-term administration of GW501516 improves inflammatory state in white adipose tissue and liver damage in high-fructose-fed mice through modulation of the renin-angiotensin system. Endocrine 50, 355–367 (2015). https://doi.org/10.1007/s12020-015-0590-1

Download citation

Keywords

  • ACE/AT1r axis
  • GW501516
  • Hepatic stellate cells
  • AMPK
  • Inflammation