, Volume 50, Issue 2, pp 434–441 | Cite as

PDE5 expression in human thyroid tumors and effects of PDE5 inhibitors on growth and migration of cancer cells

  • Marialuisa Sponziello
  • Antonella Verrienti
  • Francesca Rosignolo
  • Roberta Francesca De Rose
  • Valeria Pecce
  • Valentina Maggisano
  • Cosimo Durante
  • Stefania Bulotta
  • Giuseppe Damante
  • Laura Giacomelli
  • Cira Rosaria Tiziana Di Gioia
  • Sebastiano Filetti
  • Diego Russo
  • Marilena Celano
Original Article


Recent studies have revealed in normal thyroid tissue the presence of the transcript of several phosphodiesterases (PDEs), enzymes responsible for the hydrolysis of cyclic nucleotides. In this work, we analyzed the expression of PDE5 in a series of human papillary thyroid carcinomas (PTCs) presenting or not BRAF V600E mutation and classified according to ATA risk criteria. Furthermore, we tested the effects of two PDE5 inhibitors (sildenafil, tadalafil) against human thyroid cancer cells. PDE5 gene and protein expression were analyzed in two different cohorts of PTCs by real-time PCR using a TaqMan micro-fluid card system and Western blot. MTT and migration assay were used to evaluate the effects of PDE5 inhibitors on proliferation and migration of TPC-1, BCPAP, and 8505C cells. In a first series of 36 PTCs, we found higher expression levels of PDE5A in tumors versus non-tumor (normal) tissues. PTCs with BRAF mutation showed higher levels of mRNA compared with those without mutation. No significant differences were detected between subgroups with low and intermediate ATA risk. Upregulation of PDE5 was also detected in tumor tissue proteins. Similar results were obtained analyzing the second cohort of 50 PTCs. Moreover, all tumor tissues with high PDE5 levels showed reduction of Thyroglobulin, TSH receptor, Thyroperoxidase, and NIS transcripts. In thyroid cancer cells in vitro, sildenafil and tadalafil determined a reduction of proliferation and cellular migration. Our findings demonstrate for the first time an overexpression of PDE5 in PTCs, and the ability of PDE5 inhibitors to block the proliferation of thyroid cancer cells in culture, therefore, suggesting that specific inhibition of PDE5 may be proposed for the treatment of these tumors.


Papillary thyroid carcinoma Phosphodiesterases BRAF Thyroid cancer cells 



This work was supported by Fondazione Umberto Di Mario.


This work is funded by grant to MC (MIUR: Grant RBFR12FI27_003).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    B. Aschebrook-Kilfoy, R.B. Schechter, Y.C. Shih, E.L. Kaplan, B.C. Chiu, P. Angelos, R.H. Grogan, The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol. Biomark. Prev. 22(7), 1252–1259 (2013)CrossRefGoogle Scholar
  2. 2.
    C.K. Jung, M.P. Little, J.H. Lubin, A.V. Brenner, S.A. Wells Jr, A.J. Sigurdson, Y.E. Nikiforov, The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J. Clin. Endocrinol. Metab. 99(2), E276–E285 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    H.S. Kazaure, S.A. Roman, J.A. Sosa, Aggressive variants of papillary thyroid cancer: incidence, characteristics and predictors of survival among 43,738 patients. Ann. Surg. Oncol. 19(6), 1874–1880 (2012)CrossRefPubMedGoogle Scholar
  4. 4.
    M. Schlumberger, L. Lacroix, D. Russo, S. Filetti, J.M. Bidart, Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat. Clin. Pract. Endocrinol. Metab. 3(3), 260–269 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    C. Qin, W. Cau, Y. Zhang, F.P. Mghanga, X. Lan, Z. Gao, R. An, Correlation of clinicopathological features and expression of molecular markers with prognosis after 131I treatment of differentiated thyroid carcinoma. Clin. Nucl. Med. 37(3), e40–e46 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    F. Trapasso, R. Iuliano, E. Chiefari, F. Arturi, A. Stella, S. Filetti, A. Fusco, D. Russo, Iodide symporter gene expression in normal and transformed rat thyroid cells. Eur. J. Endocrinol. 140, 447–451 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    F. Arturi, D. Russo, J.M. Bidart, D. Scarpelli, M. Schlumberger, S. Filetti, Expression pattern of the pendrin and sodium/iodide symporter (NIS) gene in human thyroid carcinoma cell lines and human thyroid tumors. Eur. J. Endocrinol. 145, 129–135 (2001)CrossRefPubMedGoogle Scholar
  8. 8.
    P. Soares, J. Lima, A. Preto, P. Castro, J. Vinagre, R. Celestino, J.P. Couto, H. Prazeres, C. Eloy, V. Máximo, M. Sobrinho-Simões, Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr. Genomics 12, 609–617 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13(3), 184–199 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    D. Russo, F. Arturi, E. Chiefari, S. Filetti, Molecular insights into TSH receptor abnormality and thyroid disease. J. Endocrinol. Invest. 20, 36–47 (1997)CrossRefPubMedGoogle Scholar
  11. 11.
    D. Russo, C. Betterle, F. Arturi, E. Chiefari, M.E. Girelli, S. Filetti, A novel mutation in the Thyrotropin receptor gene causing loss of TSH binding but constitutive receptor activation in a family with resistance to TSH. J. Clin. Endocrinol. Metab. 85, 4238–4242 (2000)PubMedGoogle Scholar
  12. 12.
    T.F. Davies, T. Ando, R.Y. Lin, Y. Tomer, R. Latif, Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J. Clin. Invest. 115(8), 1972–1983 (2005)PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    J. Van Sande, J. Mockel, J.M. Boeynaems, P. Dor, G. Andry, J.E. Dumont, Regulation of cyclic nucleotide and prostaglandin formation in normal human thyroid tissue and in autonomous nodules. J. Clin. Endocrinol. Metab. 50, 776–785 (1980)CrossRefPubMedGoogle Scholar
  14. 14.
    L.G. Bazzara, M.L. Vélez, M.E. Costamagna, A.M. Cabanillas, L. Fozzatti, A.M. Lucero, C.G. Pellizas, A.M. Masini-Repiso, Nitric oxide/cGMP signaling inhibits TSH-stimulated iodide uptake and expression of thyroid peroxidase and thyroglobulin mRNA in FRTL-5 thyroid cells. Thyroid 17(8), 717–727 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    H. Wang, Z. Yan, S. Yang, J. Cai, H. Robinson, H. Ke, Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity. Biochemistry 47, 12760–12768 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    V. Lakics, E.H. Karran, Boess,FG.: Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59, 367–374 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    L. Persani, A. Lania, L. Alberti, R. Romoli, G. Mantovani, S. Filetti, A. Spada, M. Conti, Induction of specific phosphodiesterase isoforms by constitutive activation of the cAMP pathway in autonomous thyroid adenomas. J. Clin. Endocrinol. Metab. 85(8), 2872–2878 (2000)PubMedGoogle Scholar
  18. 18.
    D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19, 1167–1214 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    C. Durante, G. Tallini, E. Puxeddu, M. Sponziello, S. Moretti, C. Ligorio, A. Cavaliere, K.J. Rhoden, A. Verrienti, M. Maranghi, L. Giacomelli, D. Russo, S. Filetti, BRAF(V600E) mutation and expression of proangiogenic molecular markers in papillary thyroid carcinomas. Eur. J. Endocrinol. 165(3), 455–463 (2011)CrossRefPubMedGoogle Scholar
  20. 20.
    M.L. Sponziello, E. Lavarone, E. Pegolo, C. Di Loreto, C. Puppin, M.A. Russo, R. Bruno, S. Filetti, C. Durante, D. Russo, A. Di Cristofano, G. Damante, Molecular differences between human thyroid follicular adenoma and carcinoma revealed by analysis of a murine model of thyroid cancer. Endocrinology 154, 3043–3053 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    M.L. Sponziello, R. Bruno, C. Durante, M. D’Agostino, R. Corradino, P. Giannasio, E. Ciociola, E. Ferretti, M. Maranghi, A. Verrienti, G. De Toma, S. Filetti, D. Russo, Growth factor receptors gene expression and Akt phosphorylation in benign human thyroid nodules are unaffected by chronic thyrotropin suppression. Horm. Metab. Res. 43(1), 22–25 (2011)CrossRefPubMedGoogle Scholar
  22. 22.
    R.E. Schweppe, J.P. Klopper, C. Korch, U. Puqazhenthi, M. Benezra, J.A. Knauf, J.A. Fagin, L.A. Marlow, J.A. Copland, R.C. Smallridge, B.R. Haugen, Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J. Clin. Endocrinol. Metab. 93(11), 4331–4341 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    S. Bulotta, R. Corradino, M. Celano, J. Maiuolo, M. D’Agostino, M. Oliverio, A. Procopio, S. Filetti, D. Russo, Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells. J. Mol. Endocrinol. 51, 181–189 (2013)CrossRefPubMedGoogle Scholar
  24. 24.
    M. D’Agostino, P. Voce, M. Celano, M. Sponziello, S. Moretti, V. Maggisano, A. Verrienti, C. Durante, S. Filetti, E. Puxeddu, D. Russo, Sunitinib exerts only limited effects on the proliferation and differentiation of anaplastic thyroid cancer cells. Thyroid 22, 138–144 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    V. Maggisano, C. Puppin, M. Celano, M. D’Agostino, M. Sponziello, S. Micali, M. Navarra, G. Damante, S. Filetti, D. Russo, Cooperation of histone deacetylase inhibitors SAHA and valproic acid in promoting sodium/iodide symporter expression and function in rat Leydig testicular carcinoma cells. Endocrine 45(1), 148–152 (2014)CrossRefPubMedGoogle Scholar
  26. 26.
    S. Bulotta, M.V. Ierardi, J. Maiuolo, M.G. Cattaneo, A. Cerullo, L.M. Vicentini, N. Borgese, Basal nitric oxide release attenuates cell migration of HeLa and endothelial cells. Biochem. Biophys. Res. Commun. 386(4), 744–749 (2009)CrossRefPubMedGoogle Scholar
  27. 27.
    F. Arturi, D. Russo, D. Giuffrida, M. Schlumberger, S. Filetti, Sodium-iodide symporter (NIS) gene expression in lymph-node metastases of papillary thyroid carcinomas. Eur. J. Endocrinol. 143(5), 623–627 (2000)CrossRefPubMedGoogle Scholar
  28. 28.
    D. Russo, G. Damante, E. Puxeddu, C. Durante, S. Filetti, Epigenetics of thyroid cancer and novel therapeutic targets. J. Mol. Endocrinol. 46(3), R73–R81 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    D. Vu-Phan, R.J. Koenig, Genetics and epigenetics of sporadic thyroid cancer. Mol. Cell. Endocrinol. 386(1–2), 55–66 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    A.L. Galrão, A.K. Sodré, R.Y. Camargo, C.U. Friguglietti, M.A. Kulcsar, E.U. Lima, G. Medeiros-Neto, I.G. Rubio, Methylation levels of sodium-iodide symporter (NIS) promoter in benign and malignant thyroid tumors with reduced NIS expression. Endocrine 43(1), 225–229 (2013)CrossRefPubMedGoogle Scholar
  31. 31.
    C. Puppin, F. D’Aurizio, A.V. D’Elia, L. Cesaratto, G. Tell, D. Russo, S. Filetti, E. Ferretti, E. Tosi, T. Mattei, A. Pianta, L. Pellizzari, G. Damante, Effects of histone acetylation on sodium iodide symporter promoter and expression of thyroid-specific transcription factors. Endocrinology 146(9), 3967–3974 (2005)CrossRefPubMedGoogle Scholar
  32. 32.
    E. Puxeddu, C. Durante, N. Avenia, S. Filetti, D. Russo, Clinical implication of BRAF mutation in thyroid carcinoma. Trends Endocrinol. Metab. 19, 138–145 (2008)CrossRefPubMedGoogle Scholar
  33. 33.
    L.M. Caronia, J.E. Phay, M.H. Shah, Role of BRAF in thyroid oncogenesis. Clin. Cancer Res. 17(24), 7511–7517 (2011)CrossRefPubMedGoogle Scholar
  34. 34.
    T. Kunavisarut, Diagnostic biomarkers of differentiated thyroid cancer. Endocrine 44(3), 616–622 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    E. Puxeddu, S. Filetti, BRAF mutation assessment in papillary thyroid cancer: are we ready to use it in clinical practice? Endocrine 45(3), 341–343 (2014)CrossRefPubMedGoogle Scholar
  36. 36.
    T. Keravis, C. Lugnier, Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol. 165(5), 1288–1305 (2011)CrossRefGoogle Scholar
  37. 37.
    H.A. Ghofrani, I.H. Osterloh, F. Grimminger, Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Disc. 5, 689–702 (2006)CrossRefGoogle Scholar
  38. 38.
    S.L. Archer, E.D. Michelakis, Phosphodiesterase type 5 inhibitors for pulmonary arterial hypertension. N. Engl. J. Med. 361(19), 1864–1871 (2009)CrossRefPubMedGoogle Scholar
  39. 39.
    G. Corona, N. Mondaini, A. Ungar, E. Razzoli, A. Rossi, F. Fusco, Phosphodiesterase type 5 (PDE5) inhibitors in erectile dysfunction: the proper drug for the proper patient. J. Sex Med. 8(12), 3418–3432 (2011)CrossRefPubMedGoogle Scholar
  40. 40.
    S.H. Francis, J.D. Corbin, PDE5 inhibitors: targeting erectile dysfunction in diabetics. Curr. Opin. Pharmacol. 11, 683–688 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    D.H. Maurice, H. Ke, F. Ahmad, Y. Wang, J. Chung, V.C. Manganiello, Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov. 13(4), 290–314 (2014)PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marialuisa Sponziello
    • 1
  • Antonella Verrienti
    • 1
  • Francesca Rosignolo
    • 1
  • Roberta Francesca De Rose
    • 2
  • Valeria Pecce
    • 1
  • Valentina Maggisano
    • 2
  • Cosimo Durante
    • 1
  • Stefania Bulotta
    • 2
  • Giuseppe Damante
    • 3
  • Laura Giacomelli
    • 4
  • Cira Rosaria Tiziana Di Gioia
    • 5
  • Sebastiano Filetti
    • 1
  • Diego Russo
    • 2
  • Marilena Celano
    • 2
  1. 1.Department of Internal Medicine and Medical SpecialtiesUniversity of Rome “Sapienza”RomeItaly
  2. 2.Department of Health SciencesUniversity of Catanzaro “Magna Graecia”CatanzaroItaly
  3. 3.Institute of Medical GeneticsUniversity Hospital “S. Maria della Misericordia”UdineItaly
  4. 4.Department of Surgical SciencesUniversity of Rome “Sapienza”RomeItaly
  5. 5.Department of Radiological, Oncological and Pathological SciencesUniversity of Rome “Sapienza”RomeItaly

Personalised recommendations