Skip to main content
Log in

Increased chemokine (C–C motif) ligand 21 expression and its correlation with osteopontin in Graves’ disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Graves’ disease (GD) is a chronic autoimmune process characterized by the production of auto-antibodies that presumably consequent to the lymphocytic infiltrates in the thyroid. Chemokine (C–C motif) ligand 21 (CCL21) is important for the circulation of CC-chemokine receptor 7 (CCR7)-expressing cells. Meanwhile, osteopontin (OPN) enhances the production of proinflammatory cytokines and chemokines through NF-κB and MAPK signaling pathways in GD. Although CCL21 has been reported to play a vital role in several autoimmune diseases, little is known about the relationship between CCL21 and GD development. This study aimed to detect the CCL21 level in GD and to examine the role of OPN in regulating CCL21 production. 40 initial GD patients, 15 euthyroid GD patients, 12 TRAb-negative GD patients, and 25 healthy control donors were recruited. CCL21 levels in plasma and culture supernatants were quantified by enzyme-linked immunosorbent assay (ELISA). CD4+ T cells were isolated from peripheral blood mononuclear cells using antibody-coated magnetic beads. Quantitative polymerase chain reaction was used to determine CCL21 expression levels in CD4+ T cells. We demonstrated for the first time that plasma CCL21 levels were overexpressed in GD patients and recovered in TRAb-negative GD patients. Moreover, CCL21 levels correlated with TRAb levels and plasma OPN concentrations. Furthermore, we demonstrated that recombinant OPN increased the expression of CCL21 in a dose- and time-dependent manner. These data indicated a clinical correlation between plasma CCL21 levels and GD. CCL21 could serve as a novel biomarker for GD as well as a potential target for TRAb-positive GD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G.S. Cooper, B.C. Stroehla, The epidemiology of autoimmune diseases. Autoimmun. Rev. 2(3), 119–125 (2003)

    Article  PubMed  Google Scholar 

  2. D.S.A. McLeod, D.S. Cooper, The incidence and prevalence of thyroid autoimmunity. Endocrine 42, 252–265 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. B. Rapoport, S.M. McLachlan, Thyroid autoimmunity. J. Clin. Invest. 108(9), 1253–1259 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. P. Pozzilli, P. Carotenuto, G. Delitala, Lymphocytic traffic and homing into target tissue and the generation of endocrine autoimmunity. Clin. Endocrinol. 41(5), 545–554 (1994)

    Article  CAS  Google Scholar 

  5. A.P. Weetman, Cellular immune responses in autoimmune thyroid disease. Clin. Endocrinol. 61(4), 405–413 (2004)

    Article  CAS  Google Scholar 

  6. M. Rotondi, L. Chiovato, S. Romagnani, M. Serio, P. Romagnani, Role of chemokines in endocrine autoimmune diseases. Endocr. Rev. 28(5), 492–520 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. R. Forster, A.C. Davalos-Misslitz, A. Rot, CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 8(5), 362–371 (2008)

    Article  PubMed  Google Scholar 

  8. O. Bjorkdahl, K.A. Barber, S.J. Brett, M.G. Daly, C. Plumpton, N.A. Elshourbagy, J.P. Tite, L.L. Thomsen, Characterization of CC-chemokine receptor 7 expression on murine T cells in lymphoid tissues. Immunology 110(2), 170–179 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. M.D. Gunn, S. Kyuwa, C. Tam, T. Kakiuchi, A. Matsuzawa, L.T. Williams, H. Nakano, Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189(3), 451–460 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. A.P. Martin, E.C. Coronel, G. Sano, S.C. Chen, G. Vassileva, C. Canasto-Chibuque, J.D. Sedgwick, P.S. Frenette, M. Lipp, G.C. Furtado, A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J. Immunol. 173(8), 4791–4798 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. T. Kuwabara, F. Ishikawa, T. Yasuda, K. Aritomi, H. Nakano, Y. Tanaka, Y. Okada, M. Lipp, T. Kakiuchi, CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J. Immunol. 183(4), 2513–2521 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. S.R. Pickens, N.D. Chamberlain, M.V. Volin, R.M. Pope, N.E. Talarico, A.M. Mandelin, S. Shahrara, Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. Arthritis Rheum. 64(8), 2471–2481 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. T. Watanabe, J. Suzuki, A. Mitsuo, S. Nakano, Y. Tamayama, A. Katagiri, H. Amano, S. Morimoto, Y. Tokano, Y. Takasaki, Striking alteration of some populations of T/B cells in systemic lupus erythematosus: relationship to expression of CD62L or some chemokine receptors. Lupus. 17(1), 26–33 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. L.Y. Xu, X.R. Ma, Y.Y. Wang, X.L. Li, Y.C. Qi, B. Cui, X.Y. Li, G. Ning, S. Wang, The expression and pathophysiological role of osteopontin in Graves’ disease. J. Clin. Endocrinol. Metab. 96(11), E1866–E1870 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. X.L. Li, Y.C. Qi, X.R. Ma, F.J. Huang, H. Guo, X.H. Jiang, J. Hong, D.P. Lin, B. Cui, G. Ning, S. Wang, Chemokine (C-C motif) ligand 20, a potential biomarker for Graves’ disease, is regulated by osteopontin. PloS ONE. 8(5), e64277 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  16. Y.C. Qi, X.L. Li, X.R. Ma, L.Y. Xu, X.F. Zhang, X.H. Jiang, J. Hong, B. Cui, G. Ning, S. Wang, The role of osteopontin in the induction of the CD40 ligand in Graves’ disease. Clin. Endocrinol. 80(1), 128–134 (2014)

    Article  CAS  Google Scholar 

  17. A.C. Renkl, J. Wussler, T. Ahrens, K. Thoma, S. Kon, T. Uede, S.F. Martin, J.C. Simon, J.M. Weiss, Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood 106(3), 946–955 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. G. Xu, H. Nie, N. Li, W. Zheng, D. Zhang, G. Feng, L. Ni, R. Xu, J. Hong, J.Z. Zhang, Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J. Clin. Invest. 115(4), 1060–1067 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. G. Murugaiyan, A. Mittal, H.L. Weiner, Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J. Immunol. 181(11), 7480–7488 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. K.X. Wang, D.T. Denhardt, Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev. 19(5–6), 333–345 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. M. Peiser, J. Koeck, C.J. Kirschning, B. Wittig, R. Wanner, Human Langerhans cells selectively activated via Toll-like receptor 2 agonists acquire migratory and CD4+ T cell stimulatory capacity. J. Leukoc. Biol. 83(5), 1118–1127 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. L.Q. Xue, B. Han, C.M. Pan, H.D. Song, The association of SCGB3A2 polymorphisms with the risk of Graves’ disease: a meta-analysis. Endocrine 45, 365–369 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. M. Rotondi, L. Chiovato, Vitamin D deficiency in patients with Graves’ disease: probably something more than a casual association. Endocrine 43, 3–5 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. S.P. Commins, L. Borish, J.W. Steinke, Immunologic messenger molecules: cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 125(2 Suppl 2), S53–S72 (2010)

    Article  PubMed  Google Scholar 

  25. A. Antonelli, M. Rotondi, P. Fallahi, P. Romagnani, S.M. Ferrari, L. Barani, E. Ferrannini, M. Serio, Increase of interferon-gamma-inducible CXC chemokine CXCL10 serum levels in patients with active Graves’ disease, and modulation by methimazole therapy. Clin. Endocrinol. 64(2), 189–195 (2006)

    Article  CAS  Google Scholar 

  26. J. Domberg, C. Liu, C. Papewalis, C. Pfleger, K. Xu, H.S. Willenberg, D. Hermsen, W.A. Scherbaum, N.C. Schloot, M. Schott, Circulating chemokines in patients with autoimmune thyroid diseases. Horm. Metab. Res. 40(6), 416–421 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. A. Antonelli, S.M. Ferrari, D. Giuggioli, E. Ferrannini, C. Ferri, P. Fallahi, Chemokine (C–X–C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun. Rev. 13, 272–280 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. S. Costagliola, N.G. Morgenthaler, R. Hoermann, K. Badenhoop, J. Struck, D. Freitag, S. Poertl, W. Weglohner, J.M. Hollidt, B. Quadbeck, Second generation assay for thyrotropin receptor antibodies has superior diagnostic sensitivity for Graves’ disease. J. Clin. Endocrinol. Metab. 84(1), 90–97 (1999)

    CAS  PubMed  Google Scholar 

  29. C. Cappelli, E. Gandossi, M. Castellano, C. Pizzocaro, B. Agosti, A. Delbarba, I. Pirola, E. De Martino, E.A. Rosei, Prognostic value of thyrotropin receptor antibodies (TRAb) in Graves’ disease: a 120 months prospective study. Endocr. J. 54(5), 713–720 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. F. Menconi, C. Marcocci, M. Marino, Diagnosis and classification of Graves’ disease. Autoimmun. Rev. 13(4–5), 398–402 (2014)

    Article  PubMed  Google Scholar 

  31. N. Takasu, N.J. Yoshimura, Hashimoto’s thyroiditis: TGAb, TPOAb, TRAb and recovery from hypothyroidism. Expert Rev. Clin. Immunol. 4(2), 221–237 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. K. Schneider, K.G. Potter, C.F. Ware, Lymphotoxin and LIGHT signaling pathways and target genes. Immunol. Rev. 202, 49–66 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. S.R. Pickens, N.D. Chamberlain, M.V. Volin, R.M. Pope, A.M. Mandelin, S. Shahrara, Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis Rheum. 63(4), 914–922 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. G.F. Weber, S. Ashkar, M.J. Glimcher, H. Cantor, Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 271(5248), 509–512 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grants from the National Natural Science Foundation of China (No. 81270872), Shanghai Municipal Natural Science Foundation (No. 11495803400), the Sector Funds of Ministry of Health (No. 201002002, No. 201202008), and The National Key New Drug Creation and Manufacturing Program of Ministry of Science and Technology (No. 2012ZX09303006-001).

Disclosure

The authors have no duality of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Ning or Shu Wang.

Additional information

Yicheng Qi, Xiaoli Li, and Qianwei Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Li, X., Zhang, Q. et al. Increased chemokine (C–C motif) ligand 21 expression and its correlation with osteopontin in Graves’ disease. Endocrine 50, 123–129 (2015). https://doi.org/10.1007/s12020-015-0552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0552-7

Keywords

Navigation