Does microbiota composition affect thyroid homeostasis?

Abstract

The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    M. Montalto, F. D’Onofrio, A. Gallo, A. Cazzato, G. Gasbarrini, Intestinal microbiota and its functions. Dig. Liver. Dis. Suppl. 3, 30–34 (2009)

    Article  Google Scholar 

  2. 2.

    M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D.R. Mende, G.R. Fernandes, J. Tap, T. Bruls, J.M. Batto, M. Bertalan, N. Borruel, F. Casellas, L. Fernandez, L. Gautier, T. Hansen, M. Hattori, T. Hayashi, M. Kleerebezem, K. Kurokawa, M. Leclerc, F. Levenez, C. Manichanh, H.B. Nielsen, T. Nielsen, N. Pons, J. Poulain, J. Qin, T. Sicheritz-Ponten, S. Tims, D. Torrents, E. Ugarte, E.G. Zoetendal, J. Wang, F. Guarner, O. Pedersen, W.M. de Vos, S. Brunak, J. Doré, MetaHIT Consortium, M. Antolín, F. Artiguenave, H.M. Blottiere, M. Almeida, C. Brechot, C. Cara, C. Chervaux, A. Cultrone, C. Delorme, G. Denariaz, R. Dervyn, K.U. Foerstner, C. Friss, M. van de Guchte, E. Guedon, F. Haimet, W. Huber, J. van Hylckama-Vlieg, A. Jamet, C. Juste, G. Kaci, J. Knol, O. Lakhdari, S. Layec, K. Le Roux, E. Maguin, A. Mérieux, R. Melo Minardi, C. M’rini, J. Muller, R. Oozeer, J. Parkhill, P. Renault, M. Rescigno, N. Sanchez, S. Sunagawa, A. Torrejon, K. Turner, G. Vandemeulebrouck, E. Varela, Y. Winogradsky, G. Zeller, J. Weissenbach, S.D. Ehrlich, P. Bork, Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011)

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. 3.

    D. Festi, R. Schiumerini, C. Birtolo, L. Marzi, L. Montrone, E. Scaioli, A.R. Di Biase, A. Colecchia, Gut microbiota and its pathophysiology in disease paradigms. Dig. Dis. 29, 518–524 (2011)

    PubMed  Article  Google Scholar 

  4. 4.

    F. Shanahan, Translating the microbiota to medicine. Nat. Rev. Gastrenterol. Hepatol. 9, 72–74 (2012)

    Article  Google Scholar 

  5. 5.

    J.M.M. Natividad, E.F. Verdu, Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol. Res. 69, 42–51 (2013)

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    A.J. Macpherson, N.L. Harris, Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004)

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    H. Tlaskalová-Hogenová, R. Stěpánková, H. Kozáková, T. Hudcovic, L. Vannucci, L. Tučková, P. Rossmann, T. Hrnčíř, M. Kverka, Z. Zákostelská, K. Klimešová, J. Přibylová, J. Bártová, D. Sanchez, P. Fundová, D. Borovská, D. Srůtková, Z. Zídek, M. Schwarzer, P. Drastich, D.P. Funda, The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011)

    PubMed Central  PubMed  Article  Google Scholar 

  8. 8.

    E.C. Lauritano, A.L. Bilotta, M. Gabrielli, E. Scarpellini, A. Lupascu, A. Laginestra, M. Novi, S. Sottili, M. Serricchio, G. Cammarota, G. Gasbarrini, A. Pontecorvi, A. Gasbarrini, Association between hypothyroidism and small intestinal bacterial overgrowth. J. Clin. Endocrinol. Metab. 92, 4180–4184 (2007)

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    L. Zhou, X. Li, A. Ahmed, D. Wu, L. Liu, J. Qiu, Y. Yan, M. Jin, Y. Xin, Gut microbe analysis between hyperthyroid and healthy individuals. Curr. Microbiol. 69(5), 675–680 (2014)

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    A.M. Navarro, V.M. Suen, I.M. Souza, J.E. De Oliveira, J.S. Marchini, Patients with severe bowel malabsorption do not have changes in iodine status. Nutrition 21, 895–900 (2005)

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    J. Hrdina, A. Banning, A. Kipp, G. Loh, M. Blaut, R. Brigelius-Flohé, The gastrointestinal microbiota affects the selenium status and selenoprotein expression in mice. J. Nutr. Biochem. 20, 638–648 (2009)

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    M. Michalaki, S. Volonakis, I. Mamali, F. Kalfarentzos, A.G. Vagenakis, K.B. Markou, Dietary iodine absorption is not influenced by malabsorptive bariatric surgery. Obes. Surg. 24, 1921–1925 (2014)

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    R.L. Vought, F.A. Brown, K.H. Sibinovic, G. McDaniel, Effect of changing intestinal bacterial flora on thyroid function in the rat. Horm. Metab. Res. 4, 43–47 (1972)

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    T.T. Nguyen, J.J. DiStefano 3rd, L.M. Huang, H. Yamada, H.J. Cahnmann, 5′- and 5-deiodinase activities in adult rat cecum and large bowel contents inhibited by intestinal microflora. Am. J. Physiol. 265, E521–E524 (1993)

    CAS  PubMed  Google Scholar 

  15. 15.

    L. Sabatino, G. Iervasi, P. Ferrazzi, D. Francesconi, I.J. Chopra, A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci. 68, 191–202 (2000)

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    S.Y. Wu, W.L. Green, W.S. Huang, M.T. Hays, I.J. Chopra, Alternate pathways of thyroid hormone metabolism. Thyroid 15, 943–958 (2005)

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    M.P. Hazenberg, W.W. de Herder, T.J. Visser, Hydrolysis of iodothyronine conjugates by intestinal bacteria. FEMS Microbiol. Rev. 4, 9–16 (1988)

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    M.T. Hays, Thyroid hormone and the gut. Endocr. Res. 14, 203–224 (1988)

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    J.J. DiStefano 3rd, A. de Luze, T.T. Nguyen, Binding and degradation of 3,5,3′-triiodothyronine and thyroxine by rat intestinal bacteria. Am. J. Physiol. 264, E966–E972 (1993)

    CAS  PubMed  Google Scholar 

  20. 20.

    T.T. Nguyen, J.J. DiStefano 3rd, H. Yamada, Y.M. Yen, Steady state organ distribution and metabolism of thyroxine and 3,5,3′-triiodothyronine in intestines, liver, kidneys, blood, and residual carcass of the rat in vivo. Endocrinology 133, 2973–2983 (1993)

    CAS  PubMed  Google Scholar 

  21. 21.

    B. Gereben, A. Zeöld, M. Dentice, D. Salvatore, A.C. Bianco, Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol. Life Sci. 65(4), 570–590 (2008)

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    A.M. Faria, A.C. Gomes-Santos, J.L. Gonçalves, T.G. Moreira, S.R. Medeiros, L.P. Dourado, D.C. Cara, Food components and the immune system: from tonic agents to allergens. Front. Immunol. 17, 1–16 (2013)

    Google Scholar 

  23. 23.

    T.T. Macdonald, G. Monteleone, Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925 (2005)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    H.J. Wu, E. Wu, The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4–14 (2012)

    PubMed Central  PubMed  Article  Google Scholar 

  25. 25.

    K. Mori, Y. Nakagawa, H. Ozaki, Does the gut microbiota trigger Hashimoto’s thyroiditis? Discov. Med. 14, 321–326 (2012)

    PubMed  Google Scholar 

  26. 26.

    M. Rotondi, L. Chiovato, S. Romagnani, M. Serio, P. Romagnani, Role of chemokines in endocrine autoimmune diseases. Endocr. Rev. 28(5), 492–520 (2007)

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    E. Bosi, L. Molteni, M.G. Radaelli, L. Folini, I. Fermo, E. Bazzigaluppi, L. Piemonti, M.R. Pastore, R. Paroni, Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49, 2824–2827 (2006)

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    F.C. Sasso, O. Carbonara, R. Torella, A. Mezzogiorno, V. Esposito, L. Demagistris, M. Secondulfo, R. Carratu’, D. Iafusco, M. Cartenì, Ultrastructural changes in enterocytes in subjects with Hashimoto’s thyroiditis. Gut 53, 1878–1880 (2004)

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. 29.

    A.P. Weetman, Cellular immune responses in autoimmune thyroid disease. Clin. Endocrinol. 61, 405–413 (2004)

    CAS  Article  Google Scholar 

  30. 30.

    I. Horie, N. Abiru, Y. Nagayama, G. Kuriya, O. Saitoh, T. Ichikawa, Y. Iwakura, K. Eguchi, T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology 150, 5135–5142 (2009)

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    C.L. Burek, M.V. Talor, Environmental triggers of autoimmune thyroiditis. J. Autoimmun. 33, 183–189 (2009)

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. 32.

    S. Yu, P.K. Maiti, M. Dyson, R. Jain, H. Braley-Mullen, B cell-deficient NOD.H-2h4 mice have CD4+ CD25+ T regulatory cells that inhibit the development of spontaneous autoimmune thyroiditis. J. Exp. Med. 203, 349–358 (2006)

    PubMed Central  PubMed  Article  Google Scholar 

  33. 33.

    B. Deplancke, Gaskins, H.R: Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 73, 1131S–1141S (2001)

    CAS  PubMed  Google Scholar 

  34. 34.

    D. Pabla, F. Akhlaghi, H. Zia, A comparative pH-dissolution profile study of selected commercial levothyroxine products using inductively coupled plasma mass spectrometry. Eur. J. Pharm. Biopharm. 72, 105–110 (2009)

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    S. Benvenga, L. Bartolone, S. Squadrito, F. Lo Giudice, F. Trimarchi, Delayed intestinal absorption of levothyroxine. Thyroid 5, 249–253 (1995)

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    W.E. Visser, E.C. Friesema, T.J. Visser, Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25, 1–14 (2011)

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    L.F. de Sousa Moraes, L.M. Grzeskowiak, T.F. de Sales Teixeira, C. Gouveia Peluzio Mdo, Intestinal microbiota and probiotics in celiac disease. Clin. Microbiol. Rev. 27, 482–489 (2014)

    PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    C. Virili, G. Bassotti, M.G. Santaguida, R. Iuorio, S.C. Del Duca, V. Mercuri, A. Picarelli, P. Gargiulo, L. Gargano, M. Centanni, Atypical celiac disease as cause of increased need for thyroxine: a systematic study. J. Clin. Endocrinol. Metab. 97, E419–E422 (2012)

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    M. Cellini, M.G. Santaguida, I. Gatto, C. Virili, S.C. Del Duca, N. Brusca, S. Capriello, L. Gargano, M. Centanni, Systematic appraisal of lactose intolerance as cause of increased need for oral thyroxine. J. Clin. Endocrinol. Metab. 99, E1454–E1458 (2014)

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    M. Ruchała, E. Szczepanek-Parulska, A. Zybek, The influence of lactose intolerance and other gastro-intestinal tract disorders on L-thyroxine absorption. Endokrynol. Pol. 63, 318–323 (2012)

    PubMed  Google Scholar 

  41. 41.

    M. Centanni, Thyroxine treatment: absorption, malabsorption, and novel therapeutic approaches. Endocrine 43, 8–9 (2013)

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    T. He, K. Venema, M.G. Priebe, G.W. Welling, R.J. Brummer, R.J. Vonk, The role of colonic metabolism in lactose intolerance. Eur. J. Clin. Invest. 38, 541–547 (2008)

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    M.M. Walker, N.J. Talley, Review article: bacteria and pathogenesis of disease in the upper gastrointestinal tract—beyond the era of Helicobacter pylori. Aliment. Pharmacol. Ther. 39, 767–779 (2014)

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    M. Centanni, L. Gargano, G. Canettieri, N. Viceconti, A. Franchi, G. Delle Fave, B. Annibale, Thyroxine in goiter, Helicobacter pylori infection, and chronic gastritis. N. Engl. J. Med. 354, 1787–1795 (2006)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study has been supported by “Sapienza” University of Rome—(University Grants—prot.0006345).

Disclosure

The authors have nothing to disclose.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Centanni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Virili, C., Centanni, M. Does microbiota composition affect thyroid homeostasis?. Endocrine 49, 583–587 (2015). https://doi.org/10.1007/s12020-014-0509-2

Download citation

Keywords

  • Intestinal microbiota
  • Selenium
  • Thyroxine malabsorption
  • Autoimmune thyroiditis
  • Deiodinase
  • Dysbiosis