Does microbiota composition affect thyroid homeostasis?
- 1.1k Downloads
- 11 Citations
Abstract
The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.
Keywords
Intestinal microbiota Selenium Thyroxine malabsorption Autoimmune thyroiditis Deiodinase DysbiosisNotes
Acknowledgments
This study has been supported by “Sapienza” University of Rome—(University Grants—prot.0006345).
Disclosure
The authors have nothing to disclose.
References
- 1.M. Montalto, F. D’Onofrio, A. Gallo, A. Cazzato, G. Gasbarrini, Intestinal microbiota and its functions. Dig. Liver. Dis. Suppl. 3, 30–34 (2009)CrossRefGoogle Scholar
- 2.M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D.R. Mende, G.R. Fernandes, J. Tap, T. Bruls, J.M. Batto, M. Bertalan, N. Borruel, F. Casellas, L. Fernandez, L. Gautier, T. Hansen, M. Hattori, T. Hayashi, M. Kleerebezem, K. Kurokawa, M. Leclerc, F. Levenez, C. Manichanh, H.B. Nielsen, T. Nielsen, N. Pons, J. Poulain, J. Qin, T. Sicheritz-Ponten, S. Tims, D. Torrents, E. Ugarte, E.G. Zoetendal, J. Wang, F. Guarner, O. Pedersen, W.M. de Vos, S. Brunak, J. Doré, MetaHIT Consortium, M. Antolín, F. Artiguenave, H.M. Blottiere, M. Almeida, C. Brechot, C. Cara, C. Chervaux, A. Cultrone, C. Delorme, G. Denariaz, R. Dervyn, K.U. Foerstner, C. Friss, M. van de Guchte, E. Guedon, F. Haimet, W. Huber, J. van Hylckama-Vlieg, A. Jamet, C. Juste, G. Kaci, J. Knol, O. Lakhdari, S. Layec, K. Le Roux, E. Maguin, A. Mérieux, R. Melo Minardi, C. M’rini, J. Muller, R. Oozeer, J. Parkhill, P. Renault, M. Rescigno, N. Sanchez, S. Sunagawa, A. Torrejon, K. Turner, G. Vandemeulebrouck, E. Varela, Y. Winogradsky, G. Zeller, J. Weissenbach, S.D. Ehrlich, P. Bork, Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
- 3.D. Festi, R. Schiumerini, C. Birtolo, L. Marzi, L. Montrone, E. Scaioli, A.R. Di Biase, A. Colecchia, Gut microbiota and its pathophysiology in disease paradigms. Dig. Dis. 29, 518–524 (2011)PubMedCrossRefGoogle Scholar
- 4.F. Shanahan, Translating the microbiota to medicine. Nat. Rev. Gastrenterol. Hepatol. 9, 72–74 (2012)CrossRefGoogle Scholar
- 5.J.M.M. Natividad, E.F. Verdu, Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol. Res. 69, 42–51 (2013)PubMedCrossRefGoogle Scholar
- 6.A.J. Macpherson, N.L. Harris, Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004)PubMedCrossRefGoogle Scholar
- 7.H. Tlaskalová-Hogenová, R. Stěpánková, H. Kozáková, T. Hudcovic, L. Vannucci, L. Tučková, P. Rossmann, T. Hrnčíř, M. Kverka, Z. Zákostelská, K. Klimešová, J. Přibylová, J. Bártová, D. Sanchez, P. Fundová, D. Borovská, D. Srůtková, Z. Zídek, M. Schwarzer, P. Drastich, D.P. Funda, The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
- 8.E.C. Lauritano, A.L. Bilotta, M. Gabrielli, E. Scarpellini, A. Lupascu, A. Laginestra, M. Novi, S. Sottili, M. Serricchio, G. Cammarota, G. Gasbarrini, A. Pontecorvi, A. Gasbarrini, Association between hypothyroidism and small intestinal bacterial overgrowth. J. Clin. Endocrinol. Metab. 92, 4180–4184 (2007)PubMedCrossRefGoogle Scholar
- 9.L. Zhou, X. Li, A. Ahmed, D. Wu, L. Liu, J. Qiu, Y. Yan, M. Jin, Y. Xin, Gut microbe analysis between hyperthyroid and healthy individuals. Curr. Microbiol. 69(5), 675–680 (2014)PubMedCrossRefGoogle Scholar
- 10.A.M. Navarro, V.M. Suen, I.M. Souza, J.E. De Oliveira, J.S. Marchini, Patients with severe bowel malabsorption do not have changes in iodine status. Nutrition 21, 895–900 (2005)PubMedCrossRefGoogle Scholar
- 11.J. Hrdina, A. Banning, A. Kipp, G. Loh, M. Blaut, R. Brigelius-Flohé, The gastrointestinal microbiota affects the selenium status and selenoprotein expression in mice. J. Nutr. Biochem. 20, 638–648 (2009)PubMedCrossRefGoogle Scholar
- 12.M. Michalaki, S. Volonakis, I. Mamali, F. Kalfarentzos, A.G. Vagenakis, K.B. Markou, Dietary iodine absorption is not influenced by malabsorptive bariatric surgery. Obes. Surg. 24, 1921–1925 (2014)PubMedCrossRefGoogle Scholar
- 13.R.L. Vought, F.A. Brown, K.H. Sibinovic, G. McDaniel, Effect of changing intestinal bacterial flora on thyroid function in the rat. Horm. Metab. Res. 4, 43–47 (1972)PubMedCrossRefGoogle Scholar
- 14.T.T. Nguyen, J.J. DiStefano 3rd, L.M. Huang, H. Yamada, H.J. Cahnmann, 5′- and 5-deiodinase activities in adult rat cecum and large bowel contents inhibited by intestinal microflora. Am. J. Physiol. 265, E521–E524 (1993)PubMedGoogle Scholar
- 15.L. Sabatino, G. Iervasi, P. Ferrazzi, D. Francesconi, I.J. Chopra, A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci. 68, 191–202 (2000)PubMedCrossRefGoogle Scholar
- 16.S.Y. Wu, W.L. Green, W.S. Huang, M.T. Hays, I.J. Chopra, Alternate pathways of thyroid hormone metabolism. Thyroid 15, 943–958 (2005)PubMedCrossRefGoogle Scholar
- 17.M.P. Hazenberg, W.W. de Herder, T.J. Visser, Hydrolysis of iodothyronine conjugates by intestinal bacteria. FEMS Microbiol. Rev. 4, 9–16 (1988)PubMedCrossRefGoogle Scholar
- 18.M.T. Hays, Thyroid hormone and the gut. Endocr. Res. 14, 203–224 (1988)PubMedCrossRefGoogle Scholar
- 19.J.J. DiStefano 3rd, A. de Luze, T.T. Nguyen, Binding and degradation of 3,5,3′-triiodothyronine and thyroxine by rat intestinal bacteria. Am. J. Physiol. 264, E966–E972 (1993)PubMedGoogle Scholar
- 20.T.T. Nguyen, J.J. DiStefano 3rd, H. Yamada, Y.M. Yen, Steady state organ distribution and metabolism of thyroxine and 3,5,3′-triiodothyronine in intestines, liver, kidneys, blood, and residual carcass of the rat in vivo. Endocrinology 133, 2973–2983 (1993)PubMedGoogle Scholar
- 21.B. Gereben, A. Zeöld, M. Dentice, D. Salvatore, A.C. Bianco, Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol. Life Sci. 65(4), 570–590 (2008)PubMedCrossRefGoogle Scholar
- 22.A.M. Faria, A.C. Gomes-Santos, J.L. Gonçalves, T.G. Moreira, S.R. Medeiros, L.P. Dourado, D.C. Cara, Food components and the immune system: from tonic agents to allergens. Front. Immunol. 17, 1–16 (2013)Google Scholar
- 23.T.T. Macdonald, G. Monteleone, Immunity, inflammation, and allergy in the gut. Science 307, 1920–1925 (2005)PubMedCrossRefGoogle Scholar
- 24.H.J. Wu, E. Wu, The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4–14 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
- 25.K. Mori, Y. Nakagawa, H. Ozaki, Does the gut microbiota trigger Hashimoto’s thyroiditis? Discov. Med. 14, 321–326 (2012)PubMedGoogle Scholar
- 26.M. Rotondi, L. Chiovato, S. Romagnani, M. Serio, P. Romagnani, Role of chemokines in endocrine autoimmune diseases. Endocr. Rev. 28(5), 492–520 (2007)PubMedCrossRefGoogle Scholar
- 27.E. Bosi, L. Molteni, M.G. Radaelli, L. Folini, I. Fermo, E. Bazzigaluppi, L. Piemonti, M.R. Pastore, R. Paroni, Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49, 2824–2827 (2006)PubMedCrossRefGoogle Scholar
- 28.F.C. Sasso, O. Carbonara, R. Torella, A. Mezzogiorno, V. Esposito, L. Demagistris, M. Secondulfo, R. Carratu’, D. Iafusco, M. Cartenì, Ultrastructural changes in enterocytes in subjects with Hashimoto’s thyroiditis. Gut 53, 1878–1880 (2004)PubMedCentralPubMedCrossRefGoogle Scholar
- 29.A.P. Weetman, Cellular immune responses in autoimmune thyroid disease. Clin. Endocrinol. 61, 405–413 (2004)CrossRefGoogle Scholar
- 30.I. Horie, N. Abiru, Y. Nagayama, G. Kuriya, O. Saitoh, T. Ichikawa, Y. Iwakura, K. Eguchi, T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology 150, 5135–5142 (2009)PubMedCrossRefGoogle Scholar
- 31.C.L. Burek, M.V. Talor, Environmental triggers of autoimmune thyroiditis. J. Autoimmun. 33, 183–189 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
- 32.S. Yu, P.K. Maiti, M. Dyson, R. Jain, H. Braley-Mullen, B cell-deficient NOD.H-2h4 mice have CD4+ CD25+ T regulatory cells that inhibit the development of spontaneous autoimmune thyroiditis. J. Exp. Med. 203, 349–358 (2006)PubMedCentralPubMedCrossRefGoogle Scholar
- 33.B. Deplancke, Gaskins, H.R: Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 73, 1131S–1141S (2001)PubMedGoogle Scholar
- 34.D. Pabla, F. Akhlaghi, H. Zia, A comparative pH-dissolution profile study of selected commercial levothyroxine products using inductively coupled plasma mass spectrometry. Eur. J. Pharm. Biopharm. 72, 105–110 (2009)PubMedCrossRefGoogle Scholar
- 35.S. Benvenga, L. Bartolone, S. Squadrito, F. Lo Giudice, F. Trimarchi, Delayed intestinal absorption of levothyroxine. Thyroid 5, 249–253 (1995)PubMedCrossRefGoogle Scholar
- 36.W.E. Visser, E.C. Friesema, T.J. Visser, Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25, 1–14 (2011)PubMedCrossRefGoogle Scholar
- 37.L.F. de Sousa Moraes, L.M. Grzeskowiak, T.F. de Sales Teixeira, C. Gouveia Peluzio Mdo, Intestinal microbiota and probiotics in celiac disease. Clin. Microbiol. Rev. 27, 482–489 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
- 38.C. Virili, G. Bassotti, M.G. Santaguida, R. Iuorio, S.C. Del Duca, V. Mercuri, A. Picarelli, P. Gargiulo, L. Gargano, M. Centanni, Atypical celiac disease as cause of increased need for thyroxine: a systematic study. J. Clin. Endocrinol. Metab. 97, E419–E422 (2012)PubMedCrossRefGoogle Scholar
- 39.M. Cellini, M.G. Santaguida, I. Gatto, C. Virili, S.C. Del Duca, N. Brusca, S. Capriello, L. Gargano, M. Centanni, Systematic appraisal of lactose intolerance as cause of increased need for oral thyroxine. J. Clin. Endocrinol. Metab. 99, E1454–E1458 (2014)PubMedCrossRefGoogle Scholar
- 40.M. Ruchała, E. Szczepanek-Parulska, A. Zybek, The influence of lactose intolerance and other gastro-intestinal tract disorders on L-thyroxine absorption. Endokrynol. Pol. 63, 318–323 (2012)PubMedGoogle Scholar
- 41.M. Centanni, Thyroxine treatment: absorption, malabsorption, and novel therapeutic approaches. Endocrine 43, 8–9 (2013)PubMedCrossRefGoogle Scholar
- 42.T. He, K. Venema, M.G. Priebe, G.W. Welling, R.J. Brummer, R.J. Vonk, The role of colonic metabolism in lactose intolerance. Eur. J. Clin. Invest. 38, 541–547 (2008)PubMedCrossRefGoogle Scholar
- 43.M.M. Walker, N.J. Talley, Review article: bacteria and pathogenesis of disease in the upper gastrointestinal tract—beyond the era of Helicobacter pylori. Aliment. Pharmacol. Ther. 39, 767–779 (2014)PubMedCrossRefGoogle Scholar
- 44.M. Centanni, L. Gargano, G. Canettieri, N. Viceconti, A. Franchi, G. Delle Fave, B. Annibale, Thyroxine in goiter, Helicobacter pylori infection, and chronic gastritis. N. Engl. J. Med. 354, 1787–1795 (2006)PubMedCrossRefGoogle Scholar