, Volume 50, Issue 1, pp 212–222 | Cite as

The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines

  • Concetta Paola Ilisso
  • Maria Castellano
  • Silvia ZappavignaEmail author
  • Angela Lombardi
  • Giovanni Vitale
  • Alessandra Dicitore
  • Giovanna Cacciapuoti
  • Michele CaragliaEmail author
  • Marina Porcelli
Original Article


In this work, we have investigated the antiproliferative effect of AdoMet and Doxorubicin (Doxo), alone or in combination, on different breast cancer cell lines. For the evaluation of synergism, we have calculated the combination index (CI) by the Calcusyn software and we have evaluated the effects of the combination on apoptosis occurrence at FACS analysis in hormone-dependent CG5 cell line. We have found that AdoMet and Doxo given in combination were strongly synergistic in the hormone-dependent CG5 and MCF-7 human breast cancer cell line, as a CI50 < 0.5 was found after 72 h of treatment while the effect was only additive in hormone-independent MDA-MB 231 cells. On the basis of our results, we have selected a combination of AdoMet and Doxo, that was highly synergistic and we have found that the AdoMet in combination with Doxo increased apoptosis induced by Doxo alone, suggesting that the synergism on growth inhibition was largely due to apoptosis. Notably, the AdoMet/Doxo combination induced a significant activation of caspases 3, and 8, while no effect was found on caspase 9 cleavage. In contrast, no significant changes of the expression of cleaved caspase 8 and 9 were found in cells treated with AdoMet and Doxo alone. Moreover, the combination induced a significant increase of Fas and FasL expression. These results highlight the importance of the synergistic effect of AdoMet with Doxo in the regulation of hormone-dependent breast cancer cell proliferation and emphasize the anti-tumor activity of these molecules.


S-adenosylmethionine Doxorubicin Hormone-dependent breast cancer cell line CG5 Drug combination Cytotoxicity 







Bovine serum albumin


Fetal bovine serum


Propidium iodide


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide


Phosphate-buffered saline






Combination index


Dose reduction index


Standard deviation


Potentiation factor


Tumor necrosis factor



The work was supported by the Italian Ministry of Education, University and Research (MIUR) with a project (FIRB-ACCORDI DI PROGRAMMA 2011) entitled “Application of High-Throughput Technology Platforms for the Characterization of New Biomarkers and Molecular Targets in Nanovectors for the Diagnosis and Treatment of Human Cancer.” Moreover, the work was partially supported by from Regione Campania in a project entitled “Laboratori Pubblici Hauteville.”

Conflict of interest

All the authors declare no conflict of interest.


  1. 1.
    L. Giacinti, P.P. Claudio, M. Lopez, A. Giordano, Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist 11, 1–8 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    W.L. McGuire, Hormone receptors: their role in predicting prognosis and response to endocrine therapy. Semin. Oncol. 5, 428–433 (1978)PubMedGoogle Scholar
  3. 3.
    X. Yang, D.L. Phillips, A.T. Ferguson, W.G. Nelson, J.G. Herman et al., Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 61, 7025–7029 (2001)PubMedGoogle Scholar
  4. 4.
    R.G. Lapidus, S.J. Nass, N.E. Davidson, The loss of estrogen and progesterone receptor gene expression in human breast cancer. J Mammary Gland Biol. Neoplasia. 3, 85–94 (1998)CrossRefPubMedGoogle Scholar
  5. 5.
    M. Widschwendter, P.A. Jones, DNA methylation and breast carcinogenesis. Oncogene 21, 5462–5482 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    K. Polyak, Breast cancer: origins and evolution. J. Clin. Invest. 117, 3155–3163 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    R.G. Lapidus, S.J. Nass, K.A. Butash, F.F. Parl, S.A. Weitzman et al., Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res. 58, 2515–2519 (1998)PubMedGoogle Scholar
  8. 8.
    A.P. Bird, CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986)CrossRefPubMedGoogle Scholar
  9. 9.
    M. Fontecave, M. Atta, E. Mulliez, S-Adenosylmethionine: nothing goes to waste. Trends Biochem. Sci. 29, 243–249 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    G.L. Cantoni, Biological methylation: selected aspects. Annu. Rev. Biochem. 44, 435–451 (1975)CrossRefPubMedGoogle Scholar
  11. 11.
    J.M. Mato, F.J. Corrales, S.C. Lu, M.A. Avila, S-Adenosylmethionine: a control switch that regulates liver function. FASEB J. 16, 15–26 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    S.C. Lu, J.M. Mato, Role of methionine adenosyltrasferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol 35, 227–234 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    M. Porcelli, G. Cacciapuoti, M. Cartenì-Farina, A. Gambacorta, S-Adenosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solfataricus. Purification and characterization of two isoforms. Eur. J. Biochem. 177, 273–280 (1988)CrossRefPubMedGoogle Scholar
  14. 14.
    P. Chiang, R.K. Gordon, J. Tal, G.C. Zeng, B.P. Doctor, K. Pardhasaradhi, P.P. McCann, S-Adenosylmethionine and methylation. FASEB J. 10, 471–480 (1996)PubMedGoogle Scholar
  15. 15.
    A.W. Struck, M.L. Thompson, L.S. Wong, J. Micklefield, S-Adenosylmethionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 13, 2642–2655 (2012)CrossRefPubMedGoogle Scholar
  16. 16.
    S.C. Lu, Regulation of glutathione synthesis. Mol. Asp. Med. 30, 42–59 (2009)CrossRefGoogle Scholar
  17. 17.
    A.E. Pegg, Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234, 249–262 (1986)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    P.A. Frey, A.D. Hegeman, F.J. Ruzicka, The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008)CrossRefPubMedGoogle Scholar
  19. 19.
    M. Sauter, B. Moffatt, M.C. Saechao, R. Hell, M. Wirtz, Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem. J. 451, 145–154 (2013)CrossRefPubMedGoogle Scholar
  20. 20.
    T. Bottiglieri, S-Adenosyl-l-methionine (SAMe): from the bench to the bedside-molecular basis of a pleiotropic molecule. Am. J. Clin. Nutr. 76, 1151S–1157S (2002)PubMedGoogle Scholar
  21. 21.
    G.I. Papakostas, C.F. Cassiello, N. Iovieno, Folates and S-adenosylmethionine for major depressive disorder. Can. J. Psychiatry 57, 406–413 (2012)PubMedGoogle Scholar
  22. 22.
    K.L. Soeken, W.L. Lee, R.B. Bausell, M. Agelli, B.M. Berman, Safety and efficacy of S-adenosylmethionine (SAMe) for osteoarthritis. J. Farm. Pract. 51, 425–430 (2012)Google Scholar
  23. 23.
    L. Gomez-Santos, M. Vazquez-Chantada, J.M. Mato, M.L. Martinez-Chantar, SAMe and HuR in liver physiology: usefulness of stem cells in hepatic differentiation research. Methods Mol. Biol. 826, 133–149 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Q.M. Anstee, C.P. Day, S-Adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J. Hepatol. 57, 1097–1109 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    S.C. Lu, J.M. Mato, S-Adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 92, 1515–1542 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    J.M. Mato, M.L. Martinez-Chantar, S.C. Lu, S-Adenosylmethionine metabolism and liver disease. Ann. Hepatol. 12, 183–189 (2013)PubMedPubMedCentralGoogle Scholar
  27. 27.
    N.M. Martinez-Lopez, M.V. Valera-Rey, U. Ariz, N. Embade, M.V. Vazquez-Chantada, D.F. Fernandez-Ramos, L.G. Gomez-Santos, S.C. Lu, M.L.M. Martinez-Chantar, S-Adenosylmethionine and proliferation: new pathways, new targets. Biochem. Soc. Trans. 36, 848–852 (2008)CrossRefPubMedGoogle Scholar
  28. 28.
    T.W.H. Li, H. Yang, H. Peng, M. Xia, J.M. Mato, S.C. Lu, Effects of S-adenosylmethionine and metylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis 33, 427–435 (2012)CrossRefPubMedGoogle Scholar
  29. 29.
    E. Ansorena, E.R. García-Trevijano, M.L. Martínez-Chantar, Z.Z. Huang, L. Chen, J.M. Mato, M. Iraburu, S.C. Lu, M.A. Avila, S-Adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology 35, 274–280 (2002)CrossRefPubMedGoogle Scholar
  30. 30.
    Z. Hussian, M.I. Khan, M. Shahid, F.N. Almajhdi, S-Adenosylmethionine, a methyl donor, up regulates tissue inhibitor of metalloproteinase-2 in colorectal cancer. Genet. Mol. Res. 12, 1106–1118 (2013)CrossRefGoogle Scholar
  31. 31.
    L. Chen, Y. Zeng, H. Yang, T.D. Lee, S.W. French, F.J. Corrales, E.R. García-Trevijano, M.A. Avila, J.M. Mato, S.C. Lu, Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A. FASEB J. 18, 914–916 (2004)CrossRefPubMedGoogle Scholar
  32. 32.
    H. Chen, M. Xia, M. Lin, H. Yang, J. Kuhlenkamp, T. Li, N.M. Sodir, Y.H. Chen, H. Josef-Lenz, P.W. Laird, S. Clarke, J.M. Mato, S.C. Lu, Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. Gastroenterology 133, 207–218 (2007)CrossRefPubMedGoogle Scholar
  33. 33.
    T.W. Li, Q. Zhang, P. Oh, M. Xia, H. Chen, S. Bemanian, N. Lastra, M. Circ, M.P. Moyer, J.M. Mato, T.Y. Aw, S.C. Lu, S-Adenosylmethionine and methylthioadenosine inhibit cellular FLICE inhibitory protein expression and induce apoptosis in colon cancer cells. Mol. Pharmacol. 76, 192–200 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    T.C. Chou, P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984)CrossRefPubMedGoogle Scholar
  35. 35.
    T.C. Chou, R.J. Motzer, Y. Tong, G.J. Bosl, Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J. Natl Cancer Inst. 86, 1517–1524 (1994)CrossRefPubMedGoogle Scholar
  36. 36.
    M. Lamberti, S. Porto, M. Marra, S. Zappavigna, A. Grimaldi, D. Feola, D. Pesce, S. Naviglio, A. Spina, N. Sannolo, M. Caraglia, 5-Fluorouracil induces apoptosis in rat cardiocytes through intracellular oxidative stress. J. Exp. Clin. Cancer. Res. 31, 60–68 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    A. Morana, P. Stiuso, G. Colonna, M. Lamberti, M. Cartenì, M. De Rosa, Stabilization of S-adenosyl-l-methionine promoted by trehalose. Biochim. Biophys. Acta 1573, 105–108 (2002)CrossRefPubMedGoogle Scholar
  38. 38.
    Z. Song, T. Chen, I.V. Deaciuc, S. Uriarte, D. Hill, S. Barve, C.J. McCain, Modulation of endotoxin stimulated interleukin-6 production in monocytes and kupffer cells by S-adenosylmethionine (SAMe). Cytokine 28, 214–223 (2004)CrossRefPubMedGoogle Scholar
  39. 39.
    D.R. Barpe, D.D. Rosa, P.E. Froehlich, Pharmacokinetic evaluation of doxorubicin plasma levels in normal and overweight patients with breast cancer and simulation of dose adjustment by different indexes of body mass. Eur. J. Pharm. Sci. 41(3–4), 458–463 (2010)CrossRefPubMedGoogle Scholar
  40. 40.
    J. Yasunaga, Y. Taniguchi, K. Nosak, M. Yoshida, Y. Satou, T. Sakai, H. Mitsuya, M. Matsuoka, Identification of aberrantly methylated genes in association with adult T-cell leukemia. Cancer Res. 64, 6002–6009 (2004)CrossRefPubMedGoogle Scholar
  41. 41.
    F. Chiz, Z. Machnes, M. Szyf, Synergistic anti breast cancer effect of combined treatment with the methyl donor S-adenosyl methionine (SAM) with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis 35, 138–144 (2014)CrossRefGoogle Scholar
  42. 42.
    P. Lipponen, T. Pietilainen, V.M. Kosma, S. Aaltomaa, M. Eskelinen, K. Syrjanen, Apoptosis suppressing protein bcl-2 is expressed in well-differentiated breast carcinomas with favourable prognosis. J. Pathol. 177, 49–55 (1995)CrossRefPubMedGoogle Scholar
  43. 43.
    S.J. Dawson, N. Makretsov, F.M. Blows, K.E. Driver, E. Provenzano, J. Le Quesne et al., BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer 103, 668–675 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    B. Perillo, A. Sasso, C. Abbondanza, Palumbo G 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol. Cell. Biol. 20, 2890–2901 (2000)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Concetta Paola Ilisso
    • 1
  • Maria Castellano
    • 1
  • Silvia Zappavigna
    • 1
    Email author
  • Angela Lombardi
    • 1
  • Giovanni Vitale
    • 2
    • 3
  • Alessandra Dicitore
    • 3
  • Giovanna Cacciapuoti
    • 1
  • Michele Caraglia
    • 1
    Email author
  • Marina Porcelli
    • 1
  1. 1.Department of Biochemistry, Biophysics and General PathologySecond University of NaplesNaplesItaly
  2. 2.Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
  3. 3.Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCSUniversity of MilanMilanItaly

Personalised recommendations