Skip to main content

Advertisement

Log in

Clinical efficacy of radioiodine therapy in multinodular toxic goiter, applying an implemented dose calculation algorithm

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Radioiodine is a common therapeutic option for Multinodular Toxic Goiter (MTG). We evaluated an algorithm for personalized radioiodine activity calculation. Ninety-three (28 male, 65 female; 43–84 years) patients with MTG eligible for radioiodine treatment (131I-iodide) were studied. The quantity of 131I-iodide to be administered was estimated by Thyroid Volume Reduction (TVR) algorithm, developed for Graves’ disease. It takes into account 131I uptake, its effective half-life (T 1/2eff), thyroid volume, and its expected reduction during treatment. A comparison with the activity calculated by other dosimetric protocols and the “fixed” activity method was performed. 131I uptake was measured by external counting, thyroid volume by ultrasonography (US), thyroid stimulating hormone (TSH), and thyroid hormones by standard immunometric methods. In a follow-up of 6–120 months, remission of hyperthyroidism after a single 131I-iodide treatment was observed in 76 patients (64 euthyroid, 12 hypothyroid). The thyroid volume reduction observed by US after the treatment fairly correlated with what predicted by our model; T 1/2eff was highly variable and critically affected dose calculation. The administered activities (median 526 MBq, range 156–625 MBq) were slightly lower than the “fixed” activities (600 MBq) and with respect to the other protocols’ prescriptions (−15/38 %); the median 131I activity administered to relapsed patients (605 MBq) was significantly greater (P = 0.01) with respect to the dose administered to cured patients (471 MBq). Our study shows that an effective cure of MTG can be obtained with relatively low 131I activities and probably with a relatively low incidence of hypothyroidism, using TVR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Liu, J. Yang et al., United detection GNAS and TSHRS mutations in subclinical toxic multinodular goiter. Eur. Arch. Otorhinolaryngol. 267, 281–287 (2010)

    Article  PubMed  Google Scholar 

  2. A. Carlè, I. Bulow Pedersen, N. Knudsen et al., Epidemiology of subtypes of hypertiroidism in Denmark. A population-based study. Eur. J. Endocrinol. 164, 801–809 (2011)

    Article  PubMed  Google Scholar 

  3. C.T. Sawin, D.V. Becker, Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid 7, 163–176 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. B. Tarantini, C. Ciuoli, G. Di Cairano, E. Guarino, P. Mazzucato, A. Montanaro, L. Burroni, A.G. Vattimo, F. Pacini, Effectiveness of radioiodine (131-I) as definitive therapy in patients with autoimmune and non-autoimmune hyperthyroidism. J. Endocrinol. Invest. 29, 594–598 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. P. Szumowski, F. Rogowski, S. Abdelrazek, A. Kociura-Sawicka, A. Sokolik-Ostasz, Iodine isotope (131I) therapy for toxic nodular goitre: treatment efficacy parameters. Nucl. Med. Rev. Cent. East Eur. 15(1), 7–13 (2012)

    Article  PubMed  Google Scholar 

  6. L.D. Marinelli, E.H. Quimby, G.J. Hine, Dosage determination with radioactive isotopes; practical considerations in therapy and protection. Am. J Roentgenol. Radium Ther. 59, 260–281 (1948)

    CAS  PubMed  Google Scholar 

  7. M.G. Stabin, MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 37, 538–546 (1996)

    CAS  PubMed  Google Scholar 

  8. M.C. Gotthardt, A. Bauhofer, F. Berce, W.J.G. Oyen, J. Goecke, A. Pfestroff, A. Schlieck, F.H. Corstens, M. Béhé, T.M. Behr, What is the best pre-therapeutic dosimetry for succesful radioiodine therapy of multifocal autonomy? Nuklearmedizin 45, 206–212 (2006)

    CAS  PubMed  Google Scholar 

  9. A.C. Traino, F. Di Martino, M. Lazzeri, M.G. Stabin, Study of the correlation between administered activity and radiation committed dose to the thyroid in 131I therapy of Graves’ disease. Radiat. Prot. Dosimetry. 95, 117–124 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. A.C. Traino, M. Grosso, G. Mariani, Possibility of limiting the un-justified irradiation in (131)I therapy of Graves’ disease: a thyroid mass-reduction based method for the optimum activity calculation. Phys. Med. 26, 71–79 (2010)

    Article  PubMed  Google Scholar 

  11. M. Schiavo, M.C. Bagnara, I. Calamia, I. Bossert, E. Ceresola, F. Massaro, M. Giusti, A. Pilot, G. Pesce, M. Caputo, M. Bagnasco, A study of the efficacy of radioiodine therapy with individualized dosimetry in Graves’ disease: need to retarget the radiation committed dose to the thyroid. J. Endocrinol. Invest. 34, 201–205 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. M. Schiavo, M.C. Bagnara, E. Pomposelli, V. Altrinetti, I. Calamia, L. Camerieri, M. Giusti, G. Pesce, C. Reitano, M. Bagnasco, M. Caputo, Radioiodine therapy of hyperfunctioning thyorid nodules: usefulness of an implemented dose calculation algorithm allowing reduction of radioiodine amount. Q J Nucl. Med. Mol. Imaging. 57, 301–307 (2013)

    CAS  PubMed  Google Scholar 

  13. F. Massaro, L. Vera, M. Schiavo, C. Lagasio, M. Caputo, M. Bagnasco, F. Minuto, M. Giusti, Ultrasonography thyroid volume estimation in hyperthyroid patients treated with individual radioiodine dose. J. Endocrinolol. Invest. 30, 318–322 (2007)

    Article  CAS  Google Scholar 

  14. E.B. Sandell, I.M. Kolthoff, Micro determination of iodine by a catalytic method. Mikrochemica. Acta. 1, 9–25 (1937)

    Article  CAS  Google Scholar 

  15. W. Snyder, M. Ford, G. Warner, S. Watson, “S” absorbed dose per unit cumulated activity for selected radionuclides and organs, MIRD Pamphlet No. 11 (Society of Nuclear Medicine, New York, 1975)

    Google Scholar 

  16. B. Fontana, G. Curti, A. Biggi, G. Fresco, The incidence of hypothyroidism after radioactive iodine (131I) therapy for autonomous hyperfunctioning thyroid nodule evaluated by means of life-table method. J. Nucl. Med. Allied Sci. 24, 85–91 (1980)

    CAS  PubMed  Google Scholar 

  17. S.J. Cutler, Edere F Maximum utilization of the life table method in analyzing survival. J. Chron. Dis 8, 699 (1958)

    Article  CAS  PubMed  Google Scholar 

  18. S.K. Gupta, S. McGrath, K. Rogers, J. Attia, G. Lewis, S. Viswanathan, M. Saul, L. Allen, Fixed dose (555 MBq; 15 mCi) radioiodine for the treatment of hyperthyroidism: outcome and its predictors. Intern. Med. J. 40, 854–857 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. L.E. Holm, G. Lundell et al., Incidence of hypothyroidism occurring long after iodine-131 therapy for hyperthyroidism. J. Nucl. Med. 23, 103–107 (1982)

    CAS  PubMed  Google Scholar 

  20. B. Nygaard, J. Faber, A. Veje et al., Transition of nodular toxic goiter to autoimmune hyperthyroidism triggered by 131I therapy. Thyroid 9, 477–481 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant from Fondazione CARIGE, Genoa, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Bagnasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavo, M., Bagnara, M.C., Camerieri, L. et al. Clinical efficacy of radioiodine therapy in multinodular toxic goiter, applying an implemented dose calculation algorithm. Endocrine 48, 902–908 (2015). https://doi.org/10.1007/s12020-014-0398-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0398-4

Keywords

Navigation