Skip to main content
Log in

Changes in oxidized low-density lipoprotein cholesterol are associated with changes in handgrip strength in Japanese community-dwelling persons

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Nordic walking (NW), characterized by the use of two walking poles, has positive effects on several muscle groups. Muscle strength and mass decrease with age, and recently, this decrease is defined as sarcopenia. Sarcopenia may be triggered by oxidative stress. We investigated whether changes in the oxidative stress marker, malondialdehyde-modified low-density lipoprotein (MDA-LDL)/LDL-cholesterol (LDL-C) ratio are associated with change in handgrip strength (HGS), which is a useful indicator of sarcopenia, by a 12-week NW exercise among Japanese community-dwelling persons. The present study included 65 women aged 67 ± 7 years and 9 men aged 71 ± 8 years from a rural village. NW exercise of 120 min per week was performed for 12 weeks. Before and at the end of the 12-week intervention, various confounding factors and HGS were measured. 12-week changes in various factors were calculated by subtracting the baseline values from the 12-week values. Changes in HGS and follow-up HGS increased progressively with decreased changes in the MDA-LDL/LDL-C ratio after the 12-week walking exercise (r = −0.32, P = 0.006 and r = −0.35, P = 0.002, respectively). Multiple linear regression analysis showed that changes in HDL-C (β = 0.26, P = 0.019) and MDA-LDL/LDL-C ratio (β = −0.32, P = 0.004) were significantly and independently associated with changes in HGS. When the data were further stratified by gender, change in the MDA-LDL/LDL-C ratio was significantly and similarly associated with change in HGS in women only. These results suggest that change in MDA-LDL/LDL-C ratio may be a predictor for HGS after a 12-week NW exercise in community-dwelling persons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J.M. Shim, H.Y. Kwon, H.R. Kim, B.I. Kim, J.H. Jung, Comparison of the effects of walking with and without Nordic pole on upper extremity and lower extremity muscle activation. J. Phys. Ther. Sci. 25, 1553–1556 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  2. E.A. Hansen, G. Smith, Energy expenditure and comfort during Nordic walking with different pole lengths. J. Strength Cond. Res. 23, 1187–1194 (2009)

    Article  PubMed  Google Scholar 

  3. K. Sugiyama, M. Kawamura, H. Tomita, S. Katamoto, Oxygen uptake, heart rate, perceived exertion, and integrated electromyogram of the lower and upper extremities during level and Nordic walking on a treadmill. J. Physiol. Anthropol. 32, 2 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  4. M. Tschentscher, D. Niederseer, J. Niebauer, Health benefits of Nordic walking: a systematic review. Am. J. Prev. Med. 44, 76–84 (2013)

    Article  PubMed  Google Scholar 

  5. K. Kohara, Sarcopenic obesity in aging population: current status and future directions for research. Endocrine 45, 15–25 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. T.N. Kim, K.M. Choi, Sarcopenia: definition, epidemiology, and pathophysiology. J. Bone Metab. 20, 1–10 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  7. S. Fulle, F. Protasi, G. Di Tano, T. Pietrangelo, A. Beltramin, S. Boncompagni, L. Vecchiet, G. Fanò, The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp. Gerontol. 39, 17–24 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. F. Derbré, A. Gratas-Delamarche, M.C. Gómez-Cabrera, J. Viña, Inactivity-induced oxidative stress: a central role in age-related sarcopenia? Eur. J. Sport Sci. 14, S98–S108 (2014)

    Article  PubMed  Google Scholar 

  9. L.L. Ji, Exercise at old age: does it increase or alleviate oxidative stress? Ann. N. Y. Acad. Sci. 928, 236–247 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. M. Matsuda, R. Tamura, K. Kanno, T. Segawa, H. Kinoshita, O. Nishimoto, H. Nishiyama, T. Kawamoto, Impact of dyslipidemic components of metabolic syndrome, adiponectin levels, and anti-diabetes medications on malondialdehyde-modified low-density lipoprotein levels in statin-treated diabetes patients with coronary artery disease. Diabetol. Metab. Syndr. 5, 77 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  11. A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinková, M. Vandewoude, M. Zamboni, European Working Group on Sarcopenia in Older People, Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 39, 412–423 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  12. R. Kawamoto, Y. Tabara, K. Kohara, T. Miki, T. Kusunoki, S. Takayama, M. Abe, T. Katoh, N. Ohtsuka, Usefulness of combining serum uric acid and high-sensitivity C-reactive protein for risk stratification of patients with metabolic syndrome in community-dwelling women. Endocrine 44, 132–139 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Handgrip strength test: topendsports network. (2014). http://www.topendsports.com/testing/tests/handgrip.htm. Accessed 1 July 2014

  14. International Nordic Walking Federation (INWA), INWA Nordic Walking Portal. (2014). http://www.inwa-nordicwalking.com/. Accessed 1 July 2014

  15. H. Schwameder, R. Roithner, E. Muller, W. Niessen, Knee joint forces during downhill walking with hiking poles. J. Sports Sci. 17, 969–978 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. P.R. Walter, J.P. Porcari, G. Brice, L. Terry, Acute responses to using walking poles in patients with coronary artery disease. J. Cardiopulm. Rehabil. 16, 245–250 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. T.S. Church, C.P. Earnest, G.M. Morss, Field testing of physiological responses associated with Nordic Walking. Res. Q. Exerc. Sport 73, 296–300 (2002)

    Article  PubMed  Google Scholar 

  18. M.-S. Song, Y.-K. Yoo, C.-H. Choi, N.-C. Kim, Effects of Nordic walking on body composition, muscle strength, and lipid profile in elderly women. Asian Nurs. Res. 7, 1–7 (2013)

    Article  Google Scholar 

  19. T. Rantanen, J.M. Guralnik, D. Foley, K. Masaki, S. Leveille, J.D. Curb, L. White, Midlife hand grip strength as a predictor of old age disability. JAMA 281, 558–560 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. D.G. Taekema, J. Gussekloo, A.B. Maier, R.G. Westendorp, A.J. de Craen, Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39, 331–337 (2010)

    Article  PubMed  Google Scholar 

  21. P.F. Collins, M. Elia, R.J. Stratton, Respirology. Nutritional support and functional capacity in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respirology 18, 616–629 (2013)

    Article  PubMed  Google Scholar 

  22. C.R. Gale, C.N. Martyn, C. Cooper, A.A. Sayer, Grip strength, body composition, and mortality. Int. J. Epidemiol. 36, 228–235 (2007)

    Article  PubMed  Google Scholar 

  23. H. Sasaki, F. Kasagi, M. Yamada, S. Fujita, Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am. J. Med. 120, 337–342 (2007)

    Article  PubMed  Google Scholar 

  24. T. Rantanen, S. Volpato, L. Ferrucci, E. Heikkinen, L.P. Fried, J.M. Guralnik, Handgrip strength and cause-specific and total mortality in older disabled women: exploring the mechanism. J. Am. Geriatr. Soc. 51, 636–641 (2003)

    Article  PubMed  Google Scholar 

  25. O. Pansarasa, L. Castagna, B. Colombi, J. Vecchiet, G. Felzani, F. Marzatico, Age and sex differences in human skeletal muscle: role of reactive oxygen species. Free Radic. Res. 33, 287–293 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. E. Doria, D. Buonocore, A. Focarelli, F. Marzatico, Relationship between human aging muscle and oxidative system pathway. Oxid. Med. Cell Longev. 2012, 830257 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  27. D. Buonocore, S. Rucci, M. Vandoni, M. Negro, F. Marzatico, Oxidative system in aged skeletal muscle. Muscles Ligaments Tendons J. 1, 85–90 (2012)

    PubMed Central  PubMed  Google Scholar 

  28. L.L. Ji, M.C. Gomez-Cabrera, J. Vina, Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann. N. Y. Acad. Sci. 1067, 425–435 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. M.C. Gomez-Cabrera, E. Domenech, J. Viña, Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic. Biol. Med. 44, 126–131 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. M. Cesari, S.B. Kritchevsky, B.J. Nicklas, B.W. Penninx, P. Holvoet, P. Koh-Banerjee, S.R. Cummings, T.B. Harris, A.B. Newman, M. Pahor, Lipoprotein peroxidation and mobility limitation: results from the health, aging, and body composition study. Arch. Intern. Med. 165, 2148–2154 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant-in-aid for Scientific Research from the Foundation for Development of Community (2013).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Kawamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamoto, R., Kohara, K., Katoh, T. et al. Changes in oxidized low-density lipoprotein cholesterol are associated with changes in handgrip strength in Japanese community-dwelling persons. Endocrine 48, 871–877 (2015). https://doi.org/10.1007/s12020-014-0360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0360-5

Keywords

Navigation