Mouse GDF9 decreases KITL gene expression in human granulosa cells

Abstract

Kit ligand (KITL) is an important granulosa cell-derived growth factor in ovarian folliculogenesis, but its expression and function in human granulosa cells are currently poorly understood. Based on studies performed in animal models, it was hypothesised that KITL gene expression in human granulosa cells is regulated by androgens and/or growth differentiation factor 9 (GDF9). We utilised two models of human granulosa cells, the KGN granulosa tumour cell line and cumulus granulosa cells obtained from preovulatory follicles of women undergoing assisted reproduction. Cells were treated with combinations of 5α-dihydrotestosterone (DHT), recombinant mouse GDF9, and the ALK4/5/7 inhibitor SB431542. KITL mRNA levels were measured by quantitative real-time PCR. No change in KITL mRNA expression was observed after DHT treatment under any experimental conditions, but GDF9 treatment resulted in a significant decrease in KITL mRNA levels in both KGN and cumulus cells. The effect of GDF9 was abolished by the addition of SB431542. These results indicate that KITL is not directly regulated by androgen signalling in human granulosa cells. Moreover, this study provides the first evidence that GDF9 negatively regulates KITL gene expression in human granulosa cells providing new information on the regulation of these important growth factors in the human ovary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    K. Manova et al., Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110(4), 1057–1069 (1990)

    CAS  PubMed  Google Scholar 

  2. 2.

    J.A. Parrott, M.K. Skinner, Direct actions of kit-ligand on theca cell growth and differentiation during follicle development. Endocrinology 138(9), 3819–3827 (1997)

    CAS  PubMed  Google Scholar 

  3. 3.

    E.J. Huang et al., Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol. Biol. Cell 3(3), 349–362 (1992)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. 4.

    M.A. Bedell et al., DNA rearrangements located over 100 kb 5′ of the steel (Sl)-coding region in steel-panda and steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev. 9(4), 455–470 (1995)

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    S.M. Coutts et al., Activin signals via SMAD2/3 between germ and somatic cells in the human fetal ovary and regulates kit ligand expression. Dev. Biol. 314(1), 189–199 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    J.A. Elvin et al., Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13(6), 1035–1048 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    J.A. Elvin et al., Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol. Endocrinol. 13(6), 1018–1034 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    I.M. Joyce et al., Comparison of recombinant growth differentiation factor-9 and oocyte regulation of KIT ligand messenger ribonucleic acid expression in mouse ovarian follicles. Biol. Reprod. 63(6), 1669–1675 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    I.M. Joyce et al., Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev. Biol. 214(2), 342–353 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    G.M. Kidder, B.C. Vanderhyden, Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 88(4), 399–413 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. 11.

    F. Otsuka, S. Shimasaki, A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc. Natl. Acad. Sci. USA 99(12), 8060–8065 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. 12.

    F.H. Thomas et al., Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology 146(2), 941–949 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    F.H. Thomas et al., Kit ligand 2 promotes murine oocyte growth in vitro. Biol. Reprod. 78(1), 167–175 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    F.H. Thomas, B.C. Vanderhyden, Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod. Biol. Endocrinol. 4, 19 (2006)

    Article  PubMed Central  PubMed  Google Scholar 

  15. 15.

    H. Yoshida et al., Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev. Biol. 184(1), 122–137 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    U.A. Vitt et al., Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol. Reprod. 67(2), 473–480 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    N. Kaivo-Oja et al., Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells. J. Clin. Endocrinol. Metab. 90(1), 271–278 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    S. Mazerbourg et al., Growth differentiation factor-9 signalling is mediated by the type I receptor, activin receptor-like kinase 5. Mol. Endocrinol. 18(3), 653–665 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Q. Li et al., Transforming growth factor beta receptor type 1 is essential for female reproductive tract integrity and function. PLoS Genet. 7(10), e1002320 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. 20.

    D.G. Mottershead et al., Growth differentiation factor 9: bone morphogenetic protein 15 (GDF9: BMP15) synergism and protein heterodimerization. Proc. Natl. Acad. Sci. USA 110(25), E2257 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. 21.

    J. Peng et al., Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc. Natl. Acad. Sci. USA 110(8), E776–E785 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. 22.

    N. Kaivo-Oja et al., Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 88(2), 755–762 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    H. Shiina et al., Premature ovarian failure in androgen receptor-deficient mice. Proc. Natl. Acad. Sci. USA 103(1), 224–229 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. 24.

    A. Dai et al., Orphan nuclear receptor nur77 regulates androgen receptor gene expression in mouse ovary. PLoS One 7(6), e39950 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. 25.

    Y. Nishi et al., Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 142(1), 437–445 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    M.L. Grondahl et al., Specific genes are selectively expressed between cumulus and granulosa cells from individual human pre-ovulatory follicles. Mol. Hum. Reprod. 18(12), 572–584 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    S. Koks et al., The differential transcriptome and ontology profiles of floating and cumulus granulosa cells in stimulated human antral follicles. Mol. Hum. Reprod. 16(4), 229–240 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    S. Varani et al., Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol. Endocrinol. 16(6), 1154–1167 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    D.G. Mottershead et al., Characterization of recombinant human growth differentiation factor-9 signalling in ovarian granulosa cells. Mol. Cell. Endocrinol. 283(1–2), 58–67 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    C.M. Simpson et al., Activation of latent human GDF9 by a single residue change (Gly 391 Arg) in the mature domain. Endocrinology 153(3), 1301–1310 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    D.G. Mottershead, L.J. Ritter, R.B. Gilchrist, Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15. Mol. Hum. Reprod. 18(3), 121–128 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. 32.

    D.D. Fr, R. Tarlatzis, Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81(1), 19–25 (2004)

    Article  Google Scholar 

  33. 33.

    D.D. Fr, R. Tarlatzis, Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19(1), 41–47 (2004)

    Article  Google Scholar 

  34. 34.

    G.J. Inman et al., SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62(1), 65–74 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    M.M. Pulkki et al., A covalently dimerized recombinant human bone morphogenetic protein-15 variant identifies bone morphogenetic protein receptor type 1B as a key cell surface receptor on ovarian granulosa cells. Endocrinology 153(3), 1509–1518 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    S.A. McGrath, A.F. Esquela, S.J. Lee, Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9(1), 131–136 (1995)

    CAS  PubMed  Google Scholar 

  37. 37.

    M. Nomura et al., Activin stimulates CYP19A gene expression in human ovarian granulosa cell-like KGN cells via the Smad2 signaling pathway. Biochem. Biophys. Res. Commun. 436(3), 443–448 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    M.S. Butler et al., Small glutamine-rich tetratricopeptide repeat-containing protein alpha is present in human ovaries but may not be differentially expressed in relation to polycystic ovary syndrome. Fertil. Steril. 99(7), 2076–2083.e1 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    S. Chadha et al., Androgen receptor expression in human ovarian and uterine tissue of long-term androgen-treated transsexual women. Hum. Pathol. 25(11), 1198–1204 (1994)

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    H.J. Ahn et al., Parabens inhibit the early phase of folliculogenesis and steroidogenesis in the ovaries of neonatal rats. Mol. Reprod. Dev. 79(9), 626–636 (2012)

    Article  PubMed  Google Scholar 

  41. 41.

    D. Huansheng et al., Estrogen inhibits the early development of mouse follicles through regulating the expression of Kit ligand. Biochem. Biophys. Res. Commun. 410(3), 659–664 (2011)

    Article  PubMed  Google Scholar 

  42. 42.

    S. Weil et al., Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J. Clin. Endocrinol. Metab. 84(8), 2951–2956 (1999)

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    B. Planz et al., Androgen responsiveness of stromal cells of the human prostate: regulation of cell proliferation and keratinocyte growth factor by androgen. J. Urol. 160(5), 1850–1855 (1998)

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    T.E. Hickey et al., Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol. Reprod. 73(4), 825–832 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    J.L. Yang et al., Testosterone induces redistribution of forkhead box-3a and down-regulation of growth and differentiation factor 9 messenger ribonucleic acid expression at early stage of mouse folliculogenesis. Endocrinology 151(2), 774–782 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    F.L. Teixeira Filho et al., Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87(3), 1337–1344 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    L.N. Wei et al., Abnormal expression of growth differentiation factor 9 and bone morphogenetic protein 15 in stimulated oocytes during maturation from women with polycystic ovary syndrome. Fertil. Steril. 96(2), 464–468 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    K. Adekola, M. Agulnik, Advances in adjuvant therapy of gastrointestinal stromal tumors. Curr. Oncol. Rep. 14(4), 327–332 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    C.L. Corless, C.M. Barnett, M.C. Heinrich, Gastrointestinal stromal tumours: origin and molecular oncology. Nat. Rev. Cancer 11(12), 865–878 (2011)

    CAS  PubMed  Google Scholar 

  50. 50.

    R.P. Dematteo et al., Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669), 1097–1104 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Hamish Hamilton, Dr Marcin Stankiewicz, the nurses and embryology staff, and consenting patients at Flinders Reproductive Medicine for reviewing patient information, assistance in consenting patients and collecting tissues, or donating tissue for the purposes of this study. We acknowledge Professors Hajime Nawata and Toshihiko Yanase of Kyushu University and Professor Yoshihiro Nishi of Kurume University for creating and allowing us to use the KGN cell line. This work was supported by the National Health and Medical Research Council Project Grant (Grant Number 453628) to R.J.N., T.E.H. and W.D.T.; National Health and Medical Research Council Peter Doherty Fellowship to T.E.H.; University of Adelaide Faculty of Health Sciences Divisional Scholarship to A.R.T.

Conflict of interest

The authors do not have any conflicts of interest to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Astrud R. Tuck.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tuck, A.R., Mottershead, D.G., Fernandes, H.A. et al. Mouse GDF9 decreases KITL gene expression in human granulosa cells. Endocrine 48, 686–695 (2015). https://doi.org/10.1007/s12020-014-0335-6

Download citation

Keywords

  • Androgen
  • Human
  • Ovary
  • Oocyte-secreted factor
  • KGN
  • Cumulus