Skip to main content
Log in

Evaluation of impact of steroid replacement treatment on bone health in children with 21-hydroxylase deficiency

  • Research Letter
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

There are conflicting data regarding the potential impact of chronic glucocorticoid (GC) therapy on the bone mineral density of patients with congenital adrenal hyperplasia (CAH). Previous studies performed by dual-energy X-ray absorptiometry reported conflicting results. The purpose of this study was to assess the impact of chronic GC replacement treatment in children with classical and non classical CAH due to 21-hydroxylase deficiency (21-OHD) by quantitative ultrasonometry (QUS), an easy, cheap, and radiation-free technique. The study population consisted of nineteen 21-OHD patients (nine males) on lifelong GC treatment. Anthropometric, hormonal, and treatment data were recorded for each patient, and bone quality was assessed by QUS measurements. QUS findings (amplitude-dependent speed of sound and bone transmission time) were normal in 21-OHD patients and did not correlate with duration of treatment, daily, total, and yearly hydrocortisone dose. Furthermore, no significant correlation was found between QUS findings and 17α-hydroxy progesterone, Δ4-androstenedione, and testosterone levels. In conclusion, our results provide reassurance that currently used replacement doses of GC do not have a major impact on bone in patients with CAH. QUS seems to be a reliable tool for screening of bone health in children with 21-OHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P.C. White, T.A. Bachega, Congenital adrenal hyperplasia due to 21 hydroxylase deficiency: from birth to adulthood. Semin. Reprod. Med. 30, 400–409 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. P.W. Speiser, R. Azziz, L.S. Baskin, L. Ghizzoni, T.W. Hensle, D.P. Merke, H.F. Meyer-Bahlburg, W.L. Miller, V.M. Montori, S.E. Oberfield, M. Ritzen, P.C. White, Endocrine Society, Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 4133–4160 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. A. Crown, S. Lightman, Management of patients with glucocorticoid deficiency. Nat. Clin. Pract. Endocrinol. Metab. 1, 62–63 (2005)

    Article  PubMed  Google Scholar 

  4. G. Mazziotti, A. Angeli, J.P. Bilezikian, E. Canalis, A. Giustina, Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol. Metab. 17, 144–149 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. A. Ventura, G. Brunetti, S. Colucci, A. Oranger, F. Ladisa, L. Cavallo, M. Grano, M.F. Faienza, Glucocorticoid-induced osteoporosis in children with 21-hydroxylase deficiency. Biomed. Res. Int. (2013). doi:10.1155/2013/250462

    PubMed Central  PubMed  Google Scholar 

  6. A. Bachelot, Z. Chakhtoura, D. Samara-Boustani, J. Dulon, P. Touraine, M. Polak, Bone health should be an important concern in the care of patients affected by 21 hydroxylase deficiency. Int. J. Pediatr. Endocrinol. (2010). doi:10.1155/2010/326275

    PubMed Central  PubMed  Google Scholar 

  7. H. Falhammar, H. Filipsson, G. Holmdahl, P.O. Janson, A. Nordenskjöld, K. Hagenfeldt, M. Thorén, Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 92, 4643–4649 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. H. Falhammar, H. Filipsson, H. Nyström, A. Wedell, K. Brismar, M. Thorén, Bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia. Eur. J. Endocrinol. 168, 331–341 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. M.F. Faienza, G. Brunetti, S. Colucci, L. Piacente, M. Ciccarelli, L. Giordani, G.C. Del Vecchio, M. D’Amore, L. Albanese, L. Cavallo, M. Grano, Osteoclastogenesis in children with 21-hydroxylase deficiency on long-term glucocorticoid therapy: the role of receptor activator of nuclear factor-kappaB ligand/osteoprotegerin imbalance. J. Clin. Endocrinol. Metab. 94, 2269–2276 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. M.F. Faienza, A. Ventura, F. Marzano, L. Cavallo, Postmenopausal osteoporosis: the role of immune system cells. Clin. Dev. Immunol. (2013). doi:10.1155/2013/575936

    PubMed Central  PubMed  Google Scholar 

  11. G. Brunetti, M.F. Faienza, L. Piacente, A. Ventura, A. Oranger, C. Carbone, A.D. Benedetto, G. Colaianni, M. Gigante, G. Mori, L. Gesualdo, S. Colucci, L. Cavallo, M. Grano, High dickkopf-1 levels in sera and leukocytes from children with 21-hydroxylase deficiency on chronic glucocorticoid treatment. Am. J. Physiol. Endocrinol. Metab. 304, E546–E554 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. M.A. Krieg, R. Barkmann, S. Gonnelli, A. Stewart, D.C. Bauer, L. Del Rio Barquero, J.J. Kaufman, R. Lorenc, P.D. Miller, W.P. Olszynski, C. Poiana, A.M. Schott, Lewiecki E.M, D. Hans, Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J. Clin. Densitom. 11, 163–187 (2008)

    Article  PubMed  Google Scholar 

  13. A. Christoforidis, N. Printza, C. Gkogka, E. Siomou, A. Challa, E. Kazantzidou, K. Kollios, F. Papachristou, Comparative study of quantitative ultrasonography and dual-energy X-ray absorptiometry for evaluating renal osteodystrophy in children with chronic kidney disease. J. Bone Miner. Metab. 29, 321–327 (2011)

    Article  PubMed  Google Scholar 

  14. P. Pisani, M.D. Renna, F. Conversano, E. Casciaro, M. Muratore, E. Quarta, M.D. Paola, S. Casciaro, Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques. World J. Radiol. 5, 398–410 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  15. G.I. Baroncelli, G. Federico, M. Vignolo, G. Valerio, A. del Puente, M. Maghnie, M. Baserga, G. Farello, G. Saggese, Phalangeal Quantitative Ultrasound Group, Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39, 159–173 (2006)

    Article  PubMed  Google Scholar 

  16. H. Falhammar, M. Thorén, Clinical outcomes in the management of congenital adrenal hyperplasia. Endocrine 41, 355–373 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. H. Falhammar, Non-functioning adrenal incidentalomas caused by 21-hydroxylase deficiency or carrier status? Endocrine (2014). doi:10.1007/s12020-013-0162-1

  18. H. Falhammar, H.F. Nyström, M. Thorén, Quality of life, social situation, and sexual satisfaction, in adult males with congenital adrenal hyperplasia. Endocrine (2014). doi:10.1007/s12020-013-0161-2

  19. P.O. de Almeida Freire, i S.H. de Valente Lemos-Marin, A. Trevas Maciel-Guerra, A.M. Morcillo, M.T. Matias Baptista, M.P. de Mello, G. Guerra Jr., Classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a cross-sectional study of factors involved in bone mineral density. J. Bone Miner. Metab. 21, 396–401 (2003)

    Article  PubMed  Google Scholar 

  20. R.H. Elnecave, C. Kopacek, M. Rigatto, J.K. Brenner, J.A.S. de Castro, Bone mineral density in girls with classical congenital adrenal hyperplasia due to CYP21 deficiency. J. Pediatr. Endocrinol. Metab. 21, 1155–1162 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. C. Wüster, C. Albanese, D. De Aloysio, F. Duboeuf, M. Gambacciani, S. Gonnelli, C.C. Glüer, D. Hans, J. Joly, J.Y. Reginster, F. De Terlizzi, R. Cadossi, Phalangeal osteosonogrammetry study (PhOS): age related changes, diagnostic sensitivity and discrimination power. J Bone. Miner. Res. 15, 1603–1614 (2000)

    Article  PubMed  Google Scholar 

  22. G.I. Baroncelli, G. Federico, S. Bertelloni, F. Sodini, F. De Terlizzi, R. Cadossi, G. Saggese, Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr. Res. 54, 125–136 (2003)

    Article  PubMed  Google Scholar 

  23. Z.P. Halaba, J. Konstantynowicz, W. Pluskiewicz, M. Kaczmarski, J. Piotrowska-Jastrzebska, Comparison of phalangeal ultrasound and dual energy X-ray absorptiometry in healthy male and female adolescents. Ultrasound Med. Biol. 31, 1617–1622 (2005)

    Article  PubMed  Google Scholar 

  24. L. Tauchmanovà, V. Nuzzo, A. Del Puente, F. Fonderico, A. Esposito-Del Puente, Padulla. S., Rossi, A., Bifulco, G., Lupoli, G., Lombardi, G.: reduced bone mass detected by bone quantitative ultrasonometry and DEXA in pre- and postmenopausal women with endogenous subclinical hyperthyroidism. Maturitas 48, 299–306 (2004)

    Article  PubMed  Google Scholar 

  25. R. Di Mase, M. Cerbone, N. Improda, A. Esposito, D. Capalbo, C. Mainolfi, F. Santamaria, C. Pignata, M. Salerno, Bone health in children with long-term idiopathic subclinical hypothyroidism. Ital. J. Pediatr. 38, 56 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Faienza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delvecchio, M., Soldano, L., Lonero, A. et al. Evaluation of impact of steroid replacement treatment on bone health in children with 21-hydroxylase deficiency. Endocrine 48, 995–1000 (2015). https://doi.org/10.1007/s12020-014-0332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0332-9

Keywords

Navigation