Skip to main content
Log in

STEAP4 and insulin resistance

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Obesity is a multifactorial disease that caused by the interactions between genetic susceptibility genes and environmental cues. Obesity is considered as a major risk factor of insulin resistance. STEAP4 is a novel anti-obesity gene that is significantly down-regulated in adipose tissue of obese patients. Over-expression of STEAP4 can improve glucose uptake and mitochondrial function, and increase insulin sensitivity. STEAP4 expression is regulated by a variety of inflammatory cytokines, hormones, or adipokines. In this review, we discuss function of STEAP4 in regulating insulin resistance in adipose tissue in vivo, as well as in adipocytes in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Must, J. Spadano, E.H. Coakley et al., The disease burden associated with overweight and obesity. JAMA 282, 1523–1529 (1999)

    Article  PubMed  CAS  Google Scholar 

  2. A. Mokdad, E.S. Ford, B.A. Bowman et al., Prevalence of obesity, diabetes, and obesity-related health risk factors. JAMA 289, 76–79 (2003)

    Article  PubMed  Google Scholar 

  3. J.M. Stephens, J. Lee, P.F. Pilch, Tumor necrosis factor-alphainduced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J. Biol. Chem. 272, 971–976 (1997)

    Article  PubMed  CAS  Google Scholar 

  4. H. Kanda, S. Tateya, Y. Tamori et al., MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Investig. 116, 1494–1505 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. S. Glund, A. Deshmukh, Y.C. Long et al., Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 56, 1630–1637 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. J. Jager, T. Grémeaux, M. Cormont et al., Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinol. J. 148, 241–251 (2007)

    Article  CAS  Google Scholar 

  7. R.S. Ohgami, D.R. Campagna, A. McDonald et al., The STEAP proteins are metalloreductases. Blood 108, 1388–1394 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. K.E. Wellen, R. Fucho, M.F. Gregor et al., Coordinated regulation of nutrient and inflammatory response by STAMP2 (STEAP4) is essential for metabolic homeostasis. Cell 129, 537–548 (2007)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. C.M. Zhang, X. Chi, B. Wang et al., Downregulation of STEAP4, a highly-expressed TNF-α-inducible gene in adipose tissue, is associated with obesity in human. Acta Pharmacol. Sin. 29, 587–592 (2008)

    Article  PubMed  Google Scholar 

  10. J.M. Moreno-Navarrete, F. Ortega, M. Serrano et al., Decreased STAMP2 expression in association with visceral adipose tissue dysfunction. J. Clin. Endocrinol. Metab. 96, E1816–E1825 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. L. Han, M.X. Tang, Z.H. Wang et al., Overexpressing STAMP2 improves insulin resistance in diabetic ApoE−/−/LDLR−/− mice via macrophage polarization shift in adipose tissues. PLoS ONE 8, e78903 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  12. P. Arner, B.M. Stenson, E. Dungner et al., Expression of six transmembrane protein of prostate 2 in human adipose tissue associates with adiposity and insulin resistance. J. Clin. Endocrinol. Metab. 93, 2249–2254 (2008)

    Article  PubMed  CAS  Google Scholar 

  13. V. Catalán, J. Gómez-Ambrosi, A. Rodŕguez et al., Six-transmembrane epithelial antigen of prostate 4 and neutrophil gelatinase-associated lipocalin expression in visceral adipose tissue is related to iron status and inflammation in human obesity. Eur. J. Nutr. 52, 1587–1595 (2013)

    Article  PubMed  Google Scholar 

  14. M. Moldes, F. Lasnier, X. Gauthereau et al., Tumor necrosis factor-α-induced adipose-related protein (TIARP), a cell-surface protein that is highly induced by tumor necrosis factor-α and adipose conversion. J. Biol. Chem. 276, 33938–33946 (2001)

    Article  PubMed  CAS  Google Scholar 

  15. X. Chen, C. Zhu, C. Ji et al., STEAP4, a gene associated with insulin sensitivity, is regulated by several adipokines in human adipocytes. Int. J. Mol. Med. 25, 361–367 (2010)

    PubMed  CAS  Google Scholar 

  16. S. Kralisch, G. Sommer, S. Weise et al., Interleukin-1beta is a positive regulator of TIARP/STAMP2 gene and protein expression in adipocytes in vitro. FEBS Lett. 583, 1196–1200 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. C.J. Narvaez, K.M. Simmons, J. Brunton et al., Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J. Cell. Physiol. 228, 2024–2036 (2013)

    Article  PubMed  CAS  Google Scholar 

  18. J. Sikkeland, F. Saatcioglu, Differential expression and function of stamp family proteins in adipocyte differentiation. PLoS ONE 8, e68249 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. M. Fasshauer, J. Klein, S. Krahlisch et al., GH is a positive regulator of tumor necrosis factor α-induced adipose related protein in 3T3-L1 adipocytes. J. Endocrinol. 178, 523–531 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. R.S. Hubert, I. Vivanco, E. Chen et al., STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. PNAS 96, 14523–14528 (1999)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. K.P. Porkka, M.A. Helenius, T. Visakorpi, Cloning and characterization of a novel six-transmembrane protein STEAP2, expressed in normal and malignant prostate. Lab. Investig. 82, 1573–1582 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. K.P. Porkka, N.N. Nupponen, T.L. Tammela et al., Human pHyde is not a classical tumor suppressor gene in prostate cancer. Int. J. Cancer 106, 729–735 (2003)

    Article  PubMed  CAS  Google Scholar 

  23. C.G. Korkmaz, K.S. Korkmaz, P. Kurys et al., Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene 24, 4934–4945 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. J. Qiu, Y.H. Ni, H.X. Gong et al., Identification of differentially expressed genes in omental adipose tissues of obese patients by suppression subtractive hybridization. Biochem. Biophys. Res. Commun. 352, 469–478 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. G.H. Gauss, M.D. Kleven, A.K. Sendamarai et al., The Crystal structure of six transmembrane antigen of the prostate 4 (STEAP4), a ferri/cuprireductase, suggests a novel inter-domain flavin binding site. J. Biol. Chem. 288, 20668–20682 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. R.S. Ohgami, D.R. Campagna, E.L. Gree et al., Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37, 1264–1269 (2005)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. A.K. Sendamarai, R.S. Ohgami, M.D. Fleming et al., Structure of the membrane proximal oxidoreductase domain of human STEAP3, the dominant ferrireductase of the erythroid transferrin cycle. Proc. Natl. Acad. Sci. USA 105, 7410–7415 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. E. Warkentin, B. Mamat, M. Sordel-Klippert et al., Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound. EMBO J. 20, 6561–6569 (2001)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. X. Zhang, K. Krause, I. Xenarios et al., Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motif. PLoS ONE 8, e58126 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. M. Fasshauer, S. Kralisch, M. Klier et al., Interleukin-6 is a positive regulator of tumor necrosis factor K-induced adipose-related protein in 3T3-L1 adipocytes. FEBS Lett. 560, 153–157 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. M.J. Birnbaum, Identification of a novel gene encoding an insulin responsive glucose transporter protein. Cell 57, 305–315 (1989)

    Article  PubMed  CAS  Google Scholar 

  32. M. Mueckler, Facilitative glucose transporters. FEBS Eur. J. Biochem. 219, 713–725 (1994)

    Article  CAS  Google Scholar 

  33. M. Kanzaki, Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr. J. 53, 267–293 (2006)

    Article  PubMed  CAS  Google Scholar 

  34. D.N. Qin, C.Z. Kou, Y.H. Ni et al., Monoclonal antibody to the six-transmembrane epithelial antigen of prostate 4 promotes apoptosis and inhibits proliferation and glucose uptake in human adipocytes. Int. J. Mol. Med. 26, 803–811 (2010)

    PubMed  Google Scholar 

  35. R. Cheng, J. Qiu, X. Zhou et al., Knockdown of STEAP4 inhibits insulin-stimulated glucose transport and GLUT4 translocation via attenuated phosphorylation of Akt, independent of the effects of EEA1. Mol. Med. Rep. 4, 519–523 (2011)

    PubMed  CAS  Google Scholar 

  36. D. Qin, J. Zhu, C. Ji et al., Monoclonal antibody to six transmembrane epithelial antigen of prostate-4 influences insulin sensitivity by attenuating phosphorylation of P13 K (P85) and Akt: possible mitochondrial mechanism. J. Bioenerg. Biomembr. 43, 247–255 (2011)

    Article  PubMed  CAS  Google Scholar 

  37. J. Gao, X.Y. Wu, C. Owyang et al., Enhanced responses of the anterior cingulate cortex neurons to colonic distension in viscerally hypersensitive rats. J. Physiol. 570, 169–183 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. J.A. Kim, Y. Wei, J.R. Sowers, Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Q. Chen, E.J. Vazquez, S. Moghaddas et al., Production of reactive oxygen species by mitochondria. J. Biol. Chem. 278, 36027–36031 (2003)

    Article  PubMed  CAS  Google Scholar 

  40. T. von Rozycki, M.R. Yen, E.E. Lende et al., The YedZ family: possible heme binding proteins that can be fused to transporters and electron carriers. J. Mol. Microbiol. Biotechnol. 8, 129–140 (2004)

    Article  Google Scholar 

  41. J.D. Lambeth, NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004)

    Article  PubMed  CAS  Google Scholar 

  42. T.G.P. Grunewald, I. Diebold, I. Esposito et al., STEAP1 is associated with the invasive and oxidative stress phenotype of ewing tumors. Mol. Cancer Res. 10, 52–65 (2012)

    Article  PubMed  CAS  Google Scholar 

  43. Y. Pan, Y. Li, L. Guo et al., Influence of expression of six transmembrane epithelial antigen of the prostate-1 on intracellular reactive oxygen species level and cell growth. Natl. Med. J. China 88, 641–644 (2008)

    CAS  Google Scholar 

  44. L. Thelander, A. Graslund, M. Thelander, Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem. Biophys. Res. Commun. 110, 859–865 (1983)

    Article  PubMed  CAS  Google Scholar 

  45. R. Lill, K. Diekert, A. Kaut et al., The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol. Chem. 380, 1157–1166 (1999)

    Article  PubMed  CAS  Google Scholar 

  46. L.J. Cartier, Y. Ohira, M. Chen et al., Perturbation of mitochondrial composition in muscle by iron deficiency. Implications regarding regulation of mitochondrial assembly. J. Biol. Chem. 261, 13827–13832 (1986)

    PubMed  CAS  Google Scholar 

  47. A. Latifi, R. Jeanjean, S. Lemeille et al., Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J. Bacteriol. 187, 6596–6598 (2005)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. T.G.P. Grunewald, H. Bach, A. Cossarizza et al., The STEAP protein family: versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions. Biol. Cell 104, 641–657 (2012)

    Article  PubMed  CAS  Google Scholar 

  49. P. Ramadoss, F. Chiappini, M. Bilban et al., Regulation of hepatic six transmembrane epithelial antigen of prostate 4 (STEAP4) expression by STAT3 and CCAAT/enhancer-binding protein alpha. J. Biol. Chem. 285, 16453–16466 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. N. Konstantopoulos, V.C. Foletta, D.H. Segal et al., A gene expression signature for insulin resistance. Physiol. Genomics 43, 110–120 (2011)

    Article  PubMed  CAS  Google Scholar 

  51. H. ten Freyhaus, E.S. Calay, A. Yalcin et al., Stamp2 controls macrophage inflammation through nicotinamide adenine dinucleotide phosphate homeostasis and protects against atherosclerosis. Cell Metab. 16, 81–89 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  52. H.Y. Kim, H.K. Cho, S.K. Yoo et al., Hepatic STAMP2 decreases hepatitis B virus X protein-associated metabolic deregulation. Exp. Mol. Med. 44, 622–632 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. S.B. Wang, T. Lei, L.L. Zhou et al., Functional analysis and transcriptional regulation of porcine six transmembrane epithelial antigen of prostate 4 (STEAP4) gene and its novel variant in hepatocytes. Int. J. Biochem. Cell Biol. 45, 612–620 (2013)

    Article  PubMed  CAS  Google Scholar 

  54. N. Li, Y. Guo, H. Wand et al., Variations of six transmembrane epithelial antigen of prostate 4 (STEAP4) gene are associated with metabolic syndrome in a female Uygur general population. Arch. Med. Res. 41, 449–456 (2010)

    Article  CAS  Google Scholar 

  55. Y.Y. Guo, N.F. Li, C.M. Wang et al., Genetic variation and association of STEAP4 gene with metabolic syndrome in Chinese Uygur patients. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 28, 78–82 (2011)

    PubMed  Google Scholar 

  56. Y.Y. Guo, N.F. Li, L. Zhou et al., A common variation within the STEAP4 gene exons is associated with obesity in Uygur general population. Chin. Med. J. (Engl.) 124, 2096–2100 (2011)

    CAS  Google Scholar 

  57. Y.Y. Guo, L. Zhou, X.G. Yao et al., Association of STEAP4 genetic polymorphisms with insulin resistance in Uygur Chinese General Population. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 33, 299–305 (2011)

    PubMed  CAS  Google Scholar 

  58. R. Han, X. Zhang, Z. Yan et al., Association between genetic polymorphism of the six-transmembrane protein of prostate 2 and obesity in Uygur. Chin. J. Cardiol. 40, 1024–1029 (2012)

    CAS  Google Scholar 

  59. W. Zhang, M. Tang, M. Zhong et al., Association of the six transmembrane protein of prostate 2 gene polymorphisms with metabolic syndrome in Han Chinese population. Diabetes Metab. Syndr. 7, 138–142 (2013)

    Article  PubMed  CAS  Google Scholar 

  60. A. Miot, S. Maimaitiming, N. Emery et al., Genetic variability at the six transmembrane protein of prostate 2 locus and the metabolic syndrome: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. J. Clin. Endocrinol. Metab. 95, 2942–2947 (2010)

    Article  PubMed  CAS  Google Scholar 

  61. T. Wangensteen, H. Akselsen, J. Holmen et al., A common haplotype in NAPEPLD is associated with severe obesity in a Norwegian population-based cohort (the HUNT study). Obesity 19, 612–617 (2011)

    Article  PubMed  CAS  Google Scholar 

  62. A. Inoue, I. Matsumoto, K. Iwanami et al., The role of TNFalpha-induced adipose-related protein (TIARP) in TNF alpha dependent arthritic model-GPI-induced arthritis. Nihon Rinsho Meneki Gakkai Kaishi 32, 15–19 (2009)

    Article  PubMed  CAS  Google Scholar 

  63. A. Inoue, I. Matsumoto, Y. Tanaka et al., Tumor necrosis factor alpha-induced adipose-related protein expression in experimental arthritis and rheumatoid arthritis. Arthr. Res. Ther. 11, R118 (2009)

    Article  Google Scholar 

  64. A. Inoue, I. Matsumoto, Y. Tanaka et al., Crucial role of TNFalpha-induced adipose-related protein (TIARP) in the pathogenesis of autoimmune arthritis. Nihon Rinsho Meneki Gakkai Kaishi 35, 51–55 (2012)

    Article  PubMed  CAS  Google Scholar 

  65. Y. Tanaka, I. Matsumoto, K. Iwanami et al., Six-transmembrane epithelial antigen of prostate 4 (STEAP4) is expressed on monocytes/neutrophils, and is regulated by TNFantagonist in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 30, 99–102 (2012)

    PubMed  CAS  Google Scholar 

  66. Y. Tanaka, I. Matsumoto, K. Iwanami et al., Six-transmembrane epithelial antigen of prostate4 (STEAP4) is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Mod. Rheumatol. 22, 128–136 (2012)

    Article  PubMed  CAS  Google Scholar 

  67. G. Corona, M. Monami, G. Rastrelli et al., Testosterone and metabolic syndrome: a meta-analysis study. J. Sex. Med. 8, 272–283 (2011)

    Article  PubMed  CAS  Google Scholar 

  68. L. Vignozzi, A. Morelli, E. Sarchielli et al., Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J. Endocrinol. 212, 71–84 (2012)

    Article  PubMed  CAS  Google Scholar 

  69. E. Maneschi, A. Morelli, S. Filippi et al., Testosterone treatment improves metabolic syndrome-induced adipose tissue derangements. J. Endocrinol. 215, 347–362 (2012)

    Article  PubMed  CAS  Google Scholar 

  70. S.P. Weisberg, D. McCann, M. Desai et al., Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112, 1796–1808 (2003)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. E. Dalmas, K. Clément, M. Guerre-Millo, Defining macrophage phenotype and function in adipose tissue. Trends Immunol. 32, 307–314 (2011)

    Article  PubMed  CAS  Google Scholar 

  72. V. Bourlier, A. Zakaroff-Girard, A. Miranville et al., Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117, 806–815 (2008)

    Article  PubMed  CAS  Google Scholar 

  73. S. Fujisaka, I. Usui, A. Bukhari et al., Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. M.H. Mendler, B. Turlin, R. Moirand et al., Insulin resistance-associated hepatic iron overload. Gastroenterology 117, 1155–1163 (1999)

    Article  PubMed  CAS  Google Scholar 

  75. J.M. Fernández-Real, A. López-Bermejo, W. Ricart, Crosstalk between iron metabolism and diabetes. Diabetes 51, 2348–2354 (2002)

    Article  PubMed  Google Scholar 

  76. W.H. Sheu, Y.T. Chen, W.J. Lee et al., A relationship between serum ferritin and the insulin resistance syndrome is present in non-diabetic women but not in non-diabetic men. Clin. Endocrinol. 58, 380–385 (2003)

    Article  CAS  Google Scholar 

  77. O. Phinas-Hamiel, R.S. Newfield, I. Koren et al., Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int. J. Obes. 27, 416–418 (2003)

    Article  Google Scholar 

  78. L.B. Yanoff, C.M. Menzie, B. Denkinger et al., Inflammation and iron deficiency in the hypoferremia of obesity. Int. J. Obes. 31, 1412–1419 (2007)

    Article  CAS  Google Scholar 

  79. C.M. Menzie, L.B. Yanoff, B.I. Denkinger et al., Obesity-related hypoferremia is not explained by differences in reported intake of heme and nonheme iron or intake of dietary factors that can affect iron absorption. J. Am. Diet. Assoc. 108, 145–148 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. M.W. Richardson, L. Ang, P.F. Visintainer et al., The abnormal measures of iron homeostasis in pediatric obesity are associated with the inflammation of obesity. Int. J. Pediatr. Endocrinol. 2009, 713269 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  81. M. Muńoz, F. Botella-Romero, S. Gómez-Ramírez et al., Iron deficiency and anaemia in bariatric surgical patients: causes, diagnosis and proper management. Nutr. Hosp. 24, 640–654 (2009)

    PubMed  Google Scholar 

  82. E.M. Del Giudice, N. Santoro, A. Amato et al., Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J. Clin. Endocrinol. Metab. 94, 5102–5127 (2009)

    Article  PubMed  Google Scholar 

  83. I. Aeberli, R.F. Hurrell, M.B. Zimmermann, Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int. J. Obes. 33, 1111–1117 (2009)

    Article  CAS  Google Scholar 

  84. S. Bekri, P. Gual, R. Anty et al., Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131, 788–796 (2006)

    Article  PubMed  CAS  Google Scholar 

  85. B. Chung, P. Matak, A.T. McKie et al., Leptin regulates the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J. Nutr. 137, 2366–2370 (2007)

    PubMed  CAS  Google Scholar 

  86. C. Zafon, A. Lecube, R. Simó, Iron in obesity. An ancient micronutrient for a modern disease. Obes. Rev. 11, 322–328 (2010)

    Article  PubMed  CAS  Google Scholar 

  87. M.D. Knutson, Steap proteins: implications for iron and copper metabolism. Nutr. Rev. 65, 335–340 (2007)

    Article  PubMed  Google Scholar 

  88. K. Gkouvatsos, G. Papanikolaou, K. Pantopoulos, Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta 1820, 188–202 (2012)

    Article  PubMed  CAS  Google Scholar 

  89. J. Zhou, S. Ye, T. Fujiwara et al., STEAP4 plays a critical role in osteoclastogenesis in vitro by regulating cellular iron/ROS levels and CREB activation. J. Biol. Chem. (2013). doi:10.1074/jbc.M113.478750

    Google Scholar 

  90. Y. Nose, B.E. Kim, D.J. Thiele, Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 4, 235–244 (2006)

    Article  PubMed  CAS  Google Scholar 

  91. A.T. McKie, D. Barrow, G.O. Latunde-Dada et al., An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001)

    Article  PubMed  CAS  Google Scholar 

  92. S. Wyman, R.J. Simpson, A.T. McKie et al., Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582, 1901–1906 (2008)

    Article  PubMed  CAS  Google Scholar 

  93. D.J. Pillion, S.J. Kim, H. Kim et al., Insulin signal transduction: the role of protein phosphorylation. Am. J. Med. Sci. 303, 40–52 (1992)

    Article  PubMed  CAS  Google Scholar 

  94. V. Patki, J. Buxton, A. Chawla et al., Insulin action on GLUT4 traffic visualized in single 3T3-L1 adipocytes by using ultra-fast microscopy. Mol. Biol. Cell 12, 129–141 (2001)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. G. Sabio, M. Das, A. Mora et al., A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31201811) and the Specific Research Supporting Program for Discipline Construction in Sichuan Agricultural University.

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Huang, Z., Zhou, B. et al. STEAP4 and insulin resistance. Endocrine 47, 372–379 (2014). https://doi.org/10.1007/s12020-014-0230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0230-1

Keywords

Navigation