Skip to main content
Log in

Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Steriade, F. Amzica, Sleep oscillations developing into seizures in corticothalamic systems. Epilepsia 44(Suppl 12), 9–20 (2003)

    PubMed  Google Scholar 

  2. D.A. Poulain, J.B. Wakerley, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7, 773–808 (1982)

    CAS  PubMed  Google Scholar 

  3. P. Roper, J. Callaway, W. Armstrong, Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. J. Neurosci. 24, 4818–4831 (2004)

    CAS  PubMed  Google Scholar 

  4. N. Koshiya, J.C. Smith, Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363 (1999)

    CAS  PubMed  Google Scholar 

  5. D.K. Welsh, D.E. Logothetis, M. Meister, S.M. Reppert, Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995)

    CAS  PubMed  Google Scholar 

  6. M.H. Hastings, E.D. Herzog, Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythm 19, 400–413 (2004)

    CAS  Google Scholar 

  7. S.P. Kalra, M. Bagnasco, E.E. Otukonyong, M.G. Dube, P.S. Kalra, Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul. Pept. 111, 1–11 (2003)

    CAS  PubMed  Google Scholar 

  8. T.A. Nielsen, Chronobiological features of dream production. Sleep Med Rev 8, 403–424 (2004)

    PubMed  Google Scholar 

  9. U. Voss, Functions of sleep architecture and the concept of protective fields. Rev. Neurosci. 15, 33–46 (2004)

    PubMed  Google Scholar 

  10. A. Patzak, Short-term rhythms of the cardiorespiratory system and their significance in neonatology. Chronobiol. Int. 16, 249–268 (1999)

    CAS  PubMed  Google Scholar 

  11. L. Nunez, W.J. Faught, L.S. Frawley, Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons. Proc. Natl. Acad. Sci. USA 95, 9648–9653 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  12. F. Kippert, Cellular signalling and the complexity of biological timing: insights from the ultradian clock of schizosaccharomyces pombe. Philos. Trans. R. Soc. Lond. B 356, 1725–1733 (2001)

    CAS  Google Scholar 

  13. K.S. Polonsky, J. Sturis, E. Van Cauter, Temporal profiles and clinical significance of pulsatile insulin secretion. Horm. Res. 49, 178–184 (1998)

    CAS  PubMed  Google Scholar 

  14. C. Simon, G. Brandenberger, Ultradian oscillations of insulin secretion in humans. Diabetes 51(Suppl 1), S258–S261 (2002)

    CAS  PubMed  Google Scholar 

  15. J.C. Levy, Insulin signalling through ultradian oscillations. Growth Horm. IGF Res. 11(Suppl A), S17–S23 (2001)

    PubMed  Google Scholar 

  16. W.G. Rossmanith, The impact of sleep on gonadotropin secretion. Gynecol. Endocrinol. 12, 381–389 (1998)

    CAS  PubMed  Google Scholar 

  17. P.E. Chappell, Clocks and the black box: circadian influences on gonadotropin-releasing hormone secretion. J. Neuroendocrinol. 17, 119–130 (2005)

    CAS  PubMed  Google Scholar 

  18. J.C. Thiery, J. Pelletier, Multiunit activity in the anterior median eminence and adjacent areas of the hypothalamus of the ewe in relation to LH secretion. Neuroendocrinology 32, 217–224 (1981)

    CAS  PubMed  Google Scholar 

  19. P.J. Guillausseau, T. Meas, M. Virally, M. Laloi-Michelin, V. Medeau, J.P. Kevorkian, Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 34(Suppl 2), S43–S48 (2008)

    CAS  PubMed  Google Scholar 

  20. R. Tsutsumi, N.J. Webster, GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 56, 729–737 (2009)

    CAS  PubMed  Google Scholar 

  21. O. Schmitz, B. Brock, M. Hollingdal, C.B. Juhl, N. Porksen, High-frequency insulin pulsatility and type 2 diabetes: from physiology and pathophysiology to clinical pharmacology. Diabetes Metab. 28, 4S14–4S20 (2002)

    CAS  PubMed  Google Scholar 

  22. C.M. Burt Solorzano, J.P. Beller, M.Y. Abshire, J.S. Collins, C.R. McCartney, J.C. Marshall, Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 77, 332–337 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  23. E.H. Gan, R. Quinton, Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog. Brain Res. 181, 111–126 (2010)

    CAS  PubMed  Google Scholar 

  24. A.J. Silverman, Distribution of luteinizing hormone-releasing hormone (LHRH) in the guinea pig brain. Endocrinology 99, 30–41 (1976)

    CAS  PubMed  Google Scholar 

  25. A.J. Silverman, J.L. Antunes, M. Ferin, E.A. Zimmerman, The distribution of luteinizing hormone-releasing hormone (LHRH) in the hypothalamus of the rhesus monkey. Light microscopic studies using immunoperoxidase technique. Endocrinology 101, 134–142 (1977)

    CAS  PubMed  Google Scholar 

  26. J.E. Levine, V.D. Ramirez, Luteinizing hormone-releasing hormone release during the rat estrous cycle and after ovariectomy, as estimated with push-pull cannulae. Endocrinology 111, 1439–1448 (1982)

    CAS  PubMed  Google Scholar 

  27. S.M. Moenter, A.R. DeFazio, G.R. Pitts, C.S. Nunemaker, Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front. Neuroendocrinol. 24, 79–93 (2003)

    CAS  PubMed  Google Scholar 

  28. P.E. Belchetz, T.M. Plant, Y. Nakai, E.J. Keogh, E. Knobil, Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202, 631–633 (1978)

    CAS  PubMed  Google Scholar 

  29. B.P. Hauffa, Clinical implications of pulsatile hormone signals. Growth Horm. IGF Res. 11(Suppl A), S1–S8 (2001)

    PubMed  Google Scholar 

  30. C.R. McCartney, C.A. Eagleson, J.C. Marshall, Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin. Reprod. Med. 20, 317–326 (2002)

    CAS  PubMed  Google Scholar 

  31. L. Wildt, G. Marshall, E. Knobil, Experimental induction of puberty in the infantile female rhesus monkey. Science 207, 1373–1375 (1980)

    CAS  PubMed  Google Scholar 

  32. C.R. Pohl, D.W. Richardson, J.S. Hutchison, J.A. Germak, E. Knobil, Hypophysiotropic signal frequency and the functioning of the pituitary-ovarian system in the rhesus monkey. Endocrinology 112, 2076–2080 (1983)

    CAS  PubMed  Google Scholar 

  33. D.J. Haisenleder, A.C. Dalkin, G.A. Ortolano, J.C. Marshall, M.A. Shupnik, A pulsatile gonadotropin-releasing hormone stimulus is required to increase transcription of the gonadotropin subunit genes: evidence for differential regulation of transcription by pulse frequency in vivo. Endocrinology 128, 509–517 (1991)

    CAS  PubMed  Google Scholar 

  34. M.A. Shupnik, Gonadotropin gene modulation by steroids and gonadotropin-releasing hormone. Biol. Reprod. 54, 279–286 (1996)

    CAS  PubMed  Google Scholar 

  35. N. Reame, S.E. Sauder, R.P. Kelch, J.C. Marshall, Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J. Clin. Endocrinol. Metab. 59, 328–337 (1984)

    CAS  PubMed  Google Scholar 

  36. C.B. Cook, T.B. Nippoldt, G.B. Kletter, R.P. Kelch, J.C. Marshall, Naloxone increases the frequency of pulsatile luteinizing hormone secretion in women with hyperprolactinemia. J. Clin. Endocrinol. Metab. 73, 1099–1105 (1991)

    CAS  PubMed  Google Scholar 

  37. P. Mauvais-Jarvis, C. Bricaire, Pathophysiology of polycystic ovary syndrome. J. Steroid Biochem. 33, 791–794 (1989)

    CAS  PubMed  Google Scholar 

  38. J.C. Marshall, C.A. Eagleson, C.R. McCartney, Hypothalamic dysfunction. Mol. Cell. Endocrinol. 183, 29–32 (2001)

    CAS  PubMed  Google Scholar 

  39. M.D. Meglasson, F.M. Matschinsky, Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab. 2, 163–214 (1986)

    CAS  Google Scholar 

  40. J.R. Henderson, Why are the islets of langerhans? Lancet 2, 469–470 (1969)

    CAS  PubMed  Google Scholar 

  41. S. Bonner-Weir, L. Orci, New perspectives on the microvasculature of the islets of langerhans in the rat. Diabetes 31, 883–889 (1982)

    CAS  PubMed  Google Scholar 

  42. O. Cleaver, Y. Dor, Vascular instruction of pancreas development. Development 139, 2833–2843 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  43. R. Rodriguez-Diaz, M.H. Abdulreda, A.L. Formoso, I. Gans, C. Ricordi, P.O. Berggren, A. Caicedo, Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14, 45–54 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  44. B. Ahren, Islet nerves in focus—defining their neurobiological and clinical role. Diabetologia 55, 3152–3154 (2012)

    CAS  PubMed  Google Scholar 

  45. G.C. Weir, S. Bonner-Weir, Islets of langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest. 85, 983–987 (1990)

    CAS  PubMed Central  PubMed  Google Scholar 

  46. O. Cabrera, D.M. Berman, N.S. Kenyon, C. Ricordi, P.O. Berggren, A. Caicedo, The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103, 2334–2339 (2006)

    CAS  PubMed Central  PubMed  Google Scholar 

  47. M. Brissova, A.C. Powers, Architecture of pancreatic islets, in Pancreatic Beta Cell in Health and Disease, ed. by S. Seino, G.I. Bell (Springer, Japan, 2008), pp. 3–11

    Google Scholar 

  48. D.R. Matthews, D.A. Lang, M.A. Burnett, R.C. Turner, Control of pulsatile insulin secretion in man. Diabetologia 24, 231–237 (1983)

    CAS  PubMed  Google Scholar 

  49. O. Schmitz, J. Arnfred, O.H. Nielsen, H. Beck-Nielsen, H. Orskov, Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects. Acta Endocrinol. 113, 559–563 (1986)

    CAS  PubMed  Google Scholar 

  50. G. Paolisso, S. Sgambato, R. Torella, M. Varricchio, A. Scheen, F. D’Onofrio, P.J. Lefebvre, Pulsatile insulin delivery is more efficient than continuous infusion in modulating islet cell function in normal subjects and patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 66, 1220–1226 (1988)

    CAS  PubMed  Google Scholar 

  51. G. Paolisso, S. Sgambato, S. Gentile, P. Memoli, D. Giugliano, M. Varricchio, F. D’Onofrio, Advantageous metabolic effects of pulsatile insulin delivery in noninsulin-dependent diabetic patients. J. Clin. Endocrinol. Metab. 67, 1005–1010 (1988)

    CAS  PubMed  Google Scholar 

  52. E. Verdin, M. Castillo, A.S. Luyckx, P.J. Lefebvre, Similar metabolic effects of pulsatile versus continuous human insulin delivery during euglycemic, hyperinsulinemic glucose clamp in normal man. Diabetes 33, 1169–1174 (1984)

    CAS  PubMed  Google Scholar 

  53. W. Kerner, J. Bruckel, H. Zier, P. Arias, C. Thun, R. Moncayo, E.F. Pfeiffer, Similar effects of pulsatile and constant intravenous insulin delivery. Diabetes Res. Clin. Pract. 4, 269–274 (1988)

    CAS  PubMed  Google Scholar 

  54. P.R. Bratusch-Marrain, M. Komjati, W.K. Waldhausl, Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35, 922–926 (1986)

    CAS  PubMed  Google Scholar 

  55. M. Komjati, P. Bratusch-Marrain, W. Waldhausl, Superior efficacy of pulsatile versus continuous hormone exposure on hepatic glucose production in vitro. Endocrinology 118, 312–319 (1986)

    CAS  PubMed  Google Scholar 

  56. S.J. Koopmans, H.C. Sips, H.M. Krans, J.K. Radder, Pulsatile intravenous insulin replacement in streptozotocin diabetic rats is more efficient than continuous delivery: effects on glycaemic control, insulin-mediated glucose metabolism and lipolysis. Diabetologia 39, 391–400 (1996)

    CAS  PubMed  Google Scholar 

  57. J.J. Meier, J.D. Veldhuis, P.C. Butler, Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54, 1649–1656 (2005)

    CAS  PubMed  Google Scholar 

  58. A.V. Matveyenko, J.D. Veldhuis, P.C. Butler, Adaptations in pulsatile insulin secretion, hepatic insulin clearance, and beta-cell mass to age-related insulin resistance in rats. Am. J. Physiol. Endocrinol. Metab. 295, E832–E841 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  59. A.V. Matveyenko, D. Liuwantara, T. Gurlo, D. Kirakossian, M.C. Dalla, C. Cobelli, M.F. White, K.D. Copps, E. Volpi, S. Fujita, P.C. Butler, Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 61, 2269–2279 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  60. D.A. Lang, D.R. Matthews, M. Burnett, R.C. Turner, Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 30, 435–439 (1981)

    CAS  PubMed  Google Scholar 

  61. K.S. Polonsky, B.D. Given, L.J. Hirsch, H. Tillil, E.T. Shapiro, C. Beebe, B.H. Frank, J.A. Galloway, E. Van Cauter, Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 318, 1231–1239 (1988)

    CAS  PubMed  Google Scholar 

  62. M. Ristow, H. Carlqvist, J. Hebinck, M. Vorgerd, W. Krone, A. Pfeiffer, D. Muller-Wieland, C.G. Ostenson, Deficiency of phosphofructo-1-kinase/muscle subtype in humans is associated with impairment of insulin secretory oscillations. Diabetes 48, 1557–1561 (1999)

    CAS  PubMed  Google Scholar 

  63. M. Hollingdal, C.B. Juhl, S.M. Pincus, J. Sturis, J.D. Veldhuis, K.S. Polonsky, N. Porksen, O. Schmitz, Failure of physiological plasma glucose excursions to entrain high-frequency pulsatile insulin secretion in type 2 diabetes. Diabetes 49, 1334–1340 (2000)

    CAS  PubMed  Google Scholar 

  64. S.H. Song, C.J. Rhodes, J.D. Veldhuis, P.C. Butler, Diazoxide attenuates glucose-induced defects in first-phase insulin release and pulsatile insulin secretion in human islets. Endocrinology 144, 3399–3405 (2003)

    CAS  PubMed  Google Scholar 

  65. S. O’Rahilly, R.C. Turner, D.R. Matthews, Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N. Engl. J. Med. 318, 1225–1230 (1988)

    PubMed  Google Scholar 

  66. B. Nyholm, N. Porksen, C.B. Juhl, C.H. Gravholt, P.C. Butler, J. Weeke, J.D. Veldhuis, S. Pincus, O. Schmitz, Assessment of insulin secretion in relatives of patients with type 2 (non-insulin-dependent) diabetes mellitus: evidence of early beta-cell dysfunction. Metabolism 49, 896–905 (2000)

    CAS  PubMed  Google Scholar 

  67. P. Jahanshahi, R. Wu, J.D. Carter, C.S. Nunemaker, Evidence of diminished glucose stimulation and endoplasmic reticulum function in nonoscillatory pancreatic islets. Endocrinology 150, 607–615 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  68. M.M. Byrne, J. Sturis, K. Clement, N. Vionnet, M.E. Pueyo, M. Stoffel, J. Takeda, P. Passa, D. Cohen, G.I. Bell, Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J. Clin. Invest. 93, 1120–1130 (1994)

    CAS  PubMed Central  PubMed  Google Scholar 

  69. G. Velho, M.M. Byrne, K. Clement, J. Sturis, M.E. Pueyo, H. Blanche, N. Vionnet, J. Fiet, P. Passa, J.J. Robert, K.S. Polonsky, P. Froguel, Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu (UUR) gene mutation. Diabetes 45, 478–487 (1996)

    CAS  PubMed  Google Scholar 

  70. U.B. Andersen, H. Dige-Petersen, E.K. Frandsen, H. Ibsen, A. Volund, Basal insulin-level oscillations in normotensive individuals with genetic predisposition to essential hypertension exhibit an irregular pattern. J. Hypertens. 15, 1167–1173 (1997)

    CAS  PubMed  Google Scholar 

  71. E.V. Van Cauter, K.S. Polonsky, J.D. Blackman, D. Roland, J. Sturis, M.M. Byrne, A.J. Scheen, Abnormal temporal patterns of glucose tolerance in obesity: relationship to sleep-related growth hormone secretion and circadian cortisol rhythmicity. J. Clin. Endocrinol. Metab. 79, 1797–1805 (1994)

    PubMed  Google Scholar 

  72. M. Zarkovic, J. Ciric, Z. Penezic, B. Trbojevic, M. Drezgic, Effect of weight loss on the pulsatile insulin secretion. J. Clin. Endocrinol. Metab. 85, 3673–3677 (2000)

    CAS  PubMed  Google Scholar 

  73. N. Porksen, Early changes in beta-cell function and insulin pulsatility as predictors for type 2 diabetes. Diabetes Nutr. Metab. 15, 9–14 (2002)

    CAS  PubMed  Google Scholar 

  74. P. Bergsten, Pathophysiology of impaired pulsatile insulin release. Diabetes. Metab. Res. 16, 179–191 (2000)

    CAS  Google Scholar 

  75. N. Porksen, M. Hollingdal, C. Juhl, P. Butler, J.D. Veldhuis, O. Schmitz, Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51(Suppl 1), S245–S254 (2002)

    CAS  PubMed  Google Scholar 

  76. J.I. Stagner, E. Samols, G.C. Weir, Sustained oscillations of insulin, glucagon, and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J. Clin. Invest. 65, 939–942 (1980)

    CAS  PubMed Central  PubMed  Google Scholar 

  77. E. Gylfe, M. Ahmed, P. Bergsten, H. Dansk, O. Dyachok, M. Eberhardson, E. Grapengiesser, B. Hellman, J.M. Lin, T. Sundsten, A. Tengholm, E. Vieira, J. Westerlund, Signaling underlying pulsatile insulin secretion. Ups. J. Med. Sci. 105, 35–51 (2000)

    CAS  PubMed  Google Scholar 

  78. L. Sha, J. Westerlund, J.H. Szurszewski, P. Bergsten, Amplitude modulation of pulsatile insulin secretion by intrapancreatic ganglion neurons. Diabetes 50, 51–55 (2001)

    CAS  PubMed  Google Scholar 

  79. N.K. Yao, L.W. Chang, B.J. Lin, T.S. Kuo, Dynamic aspects for interislet synchronization of oscillatory insulin secretions. Am. J. Physiol. 272, E981–E988 (1997)

    CAS  PubMed  Google Scholar 

  80. J. Sturis, E. Van Cauter, J.D. Blackman, K.S. Polonsky, Entrainment of pulsatile insulin secretion by oscillatory glucose infusion. J. Clin. Invest. 87, 439–445 (1991)

    CAS  PubMed Central  PubMed  Google Scholar 

  81. M.G. Pedersen, R. Bertram, A. Sherman, Intra- and inter-islet synchronization of metabolically driven insulin secretion. Biophys. J. 89, 107–119 (2005)

    CAS  PubMed Central  PubMed  Google Scholar 

  82. C.S. Nunemaker, M. Zhang, D.H. Wasserman, O.P. McGuinness, A.C. Powers, R. Bertram, A. Sherman, L.S. Satin, Individual mice can be distinguished by the period of their islet calcium oscillations: is there an intrinsic islet period that is imprinted in vivo? Diabetes 54, 3517–3522 (2005)

    CAS  PubMed  Google Scholar 

  83. C.S. Nunemaker, J.F. Dishinger, S.B. Dula, R. Wu, M.J. Merrins, K.R. Reid, A. Sherman, R.T. Kennedy, L.S. Satin, Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i) and insulin rhythms in mouse islets. PLoS One 4, e8428 (2009)

    PubMed Central  PubMed  Google Scholar 

  84. J.W. Witkin, A.J. Silverman, Synaptology of luteinizing hormone-releasing hormone neurons in rat preoptic area. Peptides 6, 263–271 (1985)

    CAS  PubMed  Google Scholar 

  85. J.W. Witkin, Synchronized neuronal networks: the GnRH system. Microsc. Res. Tech. 44, 11–18 (1999)

    CAS  PubMed  Google Scholar 

  86. S. Pompolo, J.A. Rawson, I.J. Clarke, Projections from the arcuate/ventromedial region of the hypothalamus to the preoptic area and bed nucleus of stria terminalis in the brain of the ewe; lack of direct input to gonadotropin-releasing hormone neurons. Brain Res. 904, 1–12 (2001)

    CAS  PubMed  Google Scholar 

  87. M. Woller, E. Nichols, T. Herdendorf, D. Tutton, Release of luteinizing hormone-releasing hormone from enzymatically dispersed rat hypothalamic explants is pulsatile. Biol. Reprod. 59, 587–590 (1998)

    CAS  PubMed  Google Scholar 

  88. D.D. Rasmussen, Episodic gonadotropin-releasing hormone release from the rat isolated median eminence in vitro. Neuroendocrinology 58, 511–518 (1993)

    CAS  PubMed  Google Scholar 

  89. M.K. Herde, K.J. Iremonger, S. Constantin, A.E. Herbison, GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J. Neurosci. 33, 12689–12697 (2013)

    CAS  PubMed  Google Scholar 

  90. V. Rettori, N. Belova, W.L. Dees, C.L. Nyberg, M. Gimeno, S.M. McCann, Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl. Acad. Sci. USA 90, 10130–10134 (1993)

    CAS  PubMed Central  PubMed  Google Scholar 

  91. F.J. Lopez, M. Moretto, I. Merchenthaler, A. Negro-Vilar, Nitric oxide is involved in the genesis of pulsatile LHRH secretion from immortalized LHRH neurons. J. Neuroendocrinol. 9, 647–654 (1997)

    CAS  PubMed  Google Scholar 

  92. A.J. Martinez-Fuentes, L. Hu, L.Z. Krsmanovic, K.J. Catt, Gonadotropin-releasing hormone (GnRH) receptor expression and membrane signaling in early embryonic GnRH neurons: role in pulsatile neurosecretion. Mol. Endocrinol. 18, 1808–1817 (2004)

    CAS  PubMed  Google Scholar 

  93. C. Xu, X.Z. Xu, C.S. Nunemaker, S.M. Moenter, Dose-dependent switch in response of gonadotropin-releasing hormone (GnRH) neurons to GnRH mediated through the type I GnRH receptor. Endocrinology 145, 728–735 (2004)

    CAS  PubMed  Google Scholar 

  94. E. Hrabovszky, Z. Liposits, Afferent neuronal control of type-I gonadotropin releasing hormone neurons in the human. Front. Endocrinol. 4, 130 (2013). Lausanne

    Google Scholar 

  95. F.J. Karsch, B. Malpaux, N.L. Wayne, J.E. Robinson, Characteristics of the melatonin signal that provide the photoperiodic code for timing seasonal reproduction in the ewe. Reprod. Nutr. Dev. 28, 459–472 (1988)

    CAS  PubMed  Google Scholar 

  96. G.N. Wade, J.E. Schneider, H.Y. Li, Control of fertility by metabolic cues. Am. J. Physiol. 270, E1–E19 (1996)

    CAS  PubMed  Google Scholar 

  97. K.A. Ruka, L.L. Burger, S.M. Moenter, Regulation of arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin by modulators of neurokinin 3 and kappa-opioid receptors in adult male mice. Endocrinology 154, 2761–2771 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  98. S. de Croft, U. Boehm, A.E. Herbison, Neurokinin B activates arcuate kisspeptin neurons through multiple tachykinin receptors in the male mouse. Endocrinology 154, 2750–2760 (2013)

    PubMed  Google Scholar 

  99. O. Savari, M.C. Zielinski, X. Wang, R. Misawa, J.M. Millis, P. Witkowski, M. Hara, Distinct function of the head region of human pancreas in the pathogenesis of diabetes. Islets 5, 226–228 (2013)

    Google Scholar 

  100. X.B. Cheng, J.P. Wen, J. Yang, Y. Yang, G. Ning, X.Y. Li, GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine 39, 6–12 (2011)

    CAS  PubMed  Google Scholar 

  101. A.N. Comninos, C.N. Jayasena, W.S. Dhillo, The relationship between gut and adipose hormones, and reproduction. Hum. Reprod. Update. 20, 153–174 (2013)

    PubMed  Google Scholar 

  102. L.J. Martin, Implications of adiponectin in linking metabolism to testicular function. Endocrine (2013). doi:10.1007/s12020-013-0102-0

  103. Y.H. Lee, F. Magkos, C.S. Mantzoros, E.S. Kang, Effects of leptin and adiponectin on pancreatic beta-cell function. Metabolism 60, 1664–1672 (2011)

    CAS  PubMed  Google Scholar 

  104. S.F. Witchel, S.E. Recabarren, F. Gonzalez, E. Diamanti-Kandarakis, K.I. Cheang, A.J. Duleba, R.S. Legro, R. Homburg, R. Pasquali, R.A. Lobo, C.C. Zouboulis, F. Kelestimur, F. Fruzzetti, W. Futterweit, R.J. Norman, D.H. Abbott, Emerging concepts about prenatal genesis, aberrant metabolism and treatment paradigms in polycystic ovary syndrome. Endocrine 42, 526–534 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  105. A. Calabrese, M. Zhang, V. Serre-Beinier, D. Caton, C. Mas, L.S. Satin, P. Meda, Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells. Diabetes 52, 417–424 (2003)

    CAS  PubMed  Google Scholar 

  106. S. Bavamian, P. Klee, A. Britan, C. Populaire, D. Caille, J. Cancela, A. Charollais, P. Meda, Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes. Metab. 9(Suppl 2), 118–132 (2007)

    CAS  PubMed  Google Scholar 

  107. V. Cigliola, V. Chellakudam, W. Arabieter, P. Meda, Connexins and beta-cell functions. Diabetes Res. Clin. Pract. 99, 250–259 (2013)

    CAS  PubMed  Google Scholar 

  108. G.T. Eddlestone, A. Goncalves, J.A. Bangham, E. Rojas, Electrical coupling between cells in islets of langerhans from mouse. J. Membr. Biol. 77, 1–14 (1984)

    CAS  PubMed  Google Scholar 

  109. W.S. Head, M.L. Orseth, C.S. Nunemaker, L.S. Satin, D.W. Piston, R.K. Benninger, Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61, 1700–1707 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  110. D.J. Dierschke, A.N. Bhattacharya, L.E. Atkinson, E. Knobil, Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87, 850–853 (1970)

    CAS  PubMed  Google Scholar 

  111. R.C. Wilson, J.S. Kesner, J.M. Kaufman, T. Uemura, T. Akema, E. Knobil, Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology 39, 256–260 (1984)

    CAS  PubMed  Google Scholar 

  112. M.J. Kelly, O.K. Ronnekleiv, R.L. Eskay, Identification of estrogen-responsive LHRH neurons in the guinea pig hypothalamus. Brain Res. Bull. 12, 399–407 (1984)

    CAS  PubMed  Google Scholar 

  113. W.C. Wetsel, M.M. Valenca, I. Merchenthaler, Z. Liposits, F.J. Lopez, R.I. Weiner, P.L. Mellon, A. Negro-Vilar, Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc. Natl. Acad. Sci. USA 89, 4149–4153 (1992)

    CAS  PubMed Central  PubMed  Google Scholar 

  114. E.G. de la Martinez, A.L. Choi, R.I. Weiner, Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc. Natl. Acad. Sci. USA 89, 1852–1855 (1992)

    Google Scholar 

  115. E. Terasawa, K.L. Keen, K. Mogi, P. Claude, Pulsatile release of luteinizing hormone-releasing hormone (LHRH) in cultured LHRH neurons derived from the embryonic olfactory placode of the rhesus monkey. Endocrinology 140, 1432–1441 (1999)

    CAS  PubMed  Google Scholar 

  116. L.Z. Krsmanovic, S.S. Stojilkovic, F. Merelli, S.M. Dufour, M.A. Virmani, K.J. Catt, Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proc. Natl. Acad. Sci. USA 89, 8462–8466 (1992)

    CAS  PubMed Central  PubMed  Google Scholar 

  117. L.Z. Krsmanovic, A.J. Martinez-Fuentes, K.K. Arora, N. Mores, C.E. Navarro, H.C. Chen, S.S. Stojilkovic, K.J. Catt, Autocrine regulation of gonadotropin-releasing hormone secretion in cultured hypothalamic neurons. Endocrinology 140, 1423–1431 (1999)

    CAS  PubMed  Google Scholar 

  118. M.C. Kuehl-Kovarik, W.A. Pouliot, G.L. Halterman, R.J. Handa, F.E. Dudek, K.M. Partin, Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 22, 2313–2322 (2002)

    CAS  PubMed  Google Scholar 

  119. C.S. Nunemaker, M. Straume, R.A. DeFazio, S.M. Moenter, Gonadotropin-releasing hormone neurons generate interacting rhythms in multiple time domains. Endocrinology 144, 823–831 (2003)

    CAS  PubMed  Google Scholar 

  120. L.Z. Krsmanovic, S.S. Stojilkovic, L.M. Mertz, M. Tomic, K.J. Catt, Expression of gonadotropin-releasing hormone receptors and autocrine regulation of neuropeptide release in immortalized hypothalamic neurons. Proc. Natl. Acad. Sci. USA 90, 3908–3912 (1993)

    CAS  PubMed Central  PubMed  Google Scholar 

  121. V. Padmanabhan, N.P. Evans, G.E. Dahl, K.L. McFadden, D.T. Mauger, F.J. Karsch, Evidence for short or ultrashort loop negative feedback of gonadotropin-releasing hormone secretion. Neuroendocrinology 62, 248–258 (1995)

    CAS  PubMed  Google Scholar 

  122. L.V. DePaolo, R.A. King, A.J. Carrillo, In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone. Endocrinology 120, 272–279 (1987)

    CAS  PubMed  Google Scholar 

  123. L.Z. Krsmanovic, L. Hu, P.K. Leung, H. Feng, K.J. Catt, The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol. Metab. 20, 402–408 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  124. R. Vazquez-Martinez, S.L. Shorte, W.J. Faught, D.C. Leaumont, L.S. Frawley, F.R. Boockfor, Pulsatile exocytosis is functionally associated with GnRH gene expression in immortalized GnRH-expressing cells. Endocrinology 142, 5364–5370 (2001)

    CAS  PubMed  Google Scholar 

  125. P.E. Chappell, R.S. White, P.L. Mellon, Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J. Neurosci. 23, 11202–11213 (2003)

    CAS  PubMed Central  PubMed  Google Scholar 

  126. K.J. Tonsfeldt, P.E. Chappell, Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol. Cell. Endocrinol. 349, 3–12 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  127. G.R. Pitts, C.S. Nunemaker, S.M. Moenter, Cycles of transcription and translation do not comprise the gonadotropin-releasing hormone pulse generator in GT1 cells. Endocrinology 142, 1858–1864 (2001)

    CAS  PubMed  Google Scholar 

  128. E.A. Vitalis, J.L. Costantin, P.S. Tsai, H. Sakakibara, S. Paruthiyil, T. Iiri, J.F. Martini, M. Taga, A.L. Choi, A.C. Charles, R.I. Weiner, Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. Proc. Natl. Acad. Sci. USA 97, 1861–1866 (2000)

    CAS  PubMed Central  PubMed  Google Scholar 

  129. W.C. Wetsel, S.A. Eraly, D.B. Whyte, P.L. Mellon, Regulation of gonadotropin-releasing hormone by protein kinase-A and -C in immortalized hypothalamic neurons. Endocrinology 132, 2360–2370 (1993)

    CAS  PubMed  Google Scholar 

  130. M. El-Majdoubi, R.I. Weiner, Localization of olfactory cyclic nucleotide-gated channels in rat gonadotropin-releasing hormone neurons. Endocrinology 143, 2441–2444 (2002)

    CAS  PubMed  Google Scholar 

  131. E.G. de la Martinez, A.L. Choi, R.I. Weiner, Signaling pathways involved in GnRH secretion in GT1 cells. Neuroendocrinology 61, 310–317 (1995)

    Google Scholar 

  132. A. Charles, R. Weiner, J. Costantin, cAMP modulates the excitability of immortalized H = hypothalamic (GT1) neurons via a cyclic nucleotide gated channel. Mol. Endocrinol. 15, 997–1009 (2001)

    CAS  PubMed  Google Scholar 

  133. S. Paruthiyil, M. eL Majdoubi, M. Conti, R.I. Weiner, Phosphodiesterase expression targeted to gonadotropin-releasing hormone neurons inhibits luteinizing hormone pulses in transgenic rats. Proc. Natl. Acad. Sci. USA 99, 17191–17196 (2002)

    CAS  PubMed Central  PubMed  Google Scholar 

  134. S. Constantin, S. Wray, Gonadotropin-releasing hormone-1 neuronal activity is independent of hyperpolarization-activated cyclic nucleotide-modulated channels but is sensitive to protein kinase a-dependent phosphorylation. Endocrinology 149, 3500–3511 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  135. S. Constantin, S. Wray, Gonadotropin-releasing hormone-1 neuronal activity is independent of cyclic nucleotide-gated channels. Endocrinology 149, 279–290 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  136. M.N. Lehman, L.M. Coolen, R.L. Goodman, Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151, 3479–3489 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  137. N.E. Rance, S.J. Krajewski, M.A. Smith, M. Cholanian, P.A. Dacks, Neurokinin B and the hypothalamic regulation of reproduction. Brain Res. 1364, 116–128 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  138. H. Okamura, H. Tsukamura, S. Ohkura, Y. Uenoyama, Y. Wakabayashi, K. Maeda, Kisspeptin and GnRH pulse generation. Adv. Exp. Med. Biol. 784, 297–323 (2013)

    CAS  PubMed  Google Scholar 

  139. R.A. Steiner, Kisspeptin: past, present, and prologue. Adv. Exp. Med. Biol. 784, 3–7 (2013)

    CAS  PubMed  Google Scholar 

  140. C.J. Goodner, B.C. Walike, D.J. Koerker, J.W. Ensinck, A.C. Brown, E.W. Chideckel, J. Palmer, L. Kalnasy, Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 195, 177–179 (1977)

    CAS  PubMed  Google Scholar 

  141. D.A. Lang, D.R. Matthews, J. Peto, R.C. Turner, Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N. Engl. J. Med. 301, 1023–1027 (1979)

    CAS  PubMed  Google Scholar 

  142. S.H. Song, S.S. McIntyre, H. Shah, J.D. Veldhuis, P.C. Hayes, P.C. Butler, Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 85, 4491–4499 (2000)

    CAS  PubMed  Google Scholar 

  143. J.C. Henquin, H.P. Meissner, W. Schmeer, Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflugers Arch. 393, 322–327 (1982)

    CAS  PubMed  Google Scholar 

  144. D.L. Cook, Isolated islets of langerhans have slow oscillations of electrical activity. Metab. Clin. Exp. 32, 681–685 (1983)

    CAS  PubMed  Google Scholar 

  145. R. Bertram, A. Sherman, L.S. Satin, Metabolic and Electrical Oscillations: Partners in Controlling Pulsatile Insulin Secretion (Am. J. Physiol. Endocrinol, Metab, 2007)

    Google Scholar 

  146. P. Bergsten, E. Grapengiesser, E. Gylfe, A. Tengholm, B. Hellman, Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 269, 8749–8753 (1994)

    CAS  PubMed  Google Scholar 

  147. P. Gilon, J.C. Henquin, Distinct effects of glucose on the synchronous oscillations of insulin release and cytoplasmic Ca2+ concentration measured simultaneously in single mouse islets. Endocrinology 136, 5725–5730 (1995)

    CAS  PubMed  Google Scholar 

  148. R.M. Barbosa, A.M. Silva, A.R. Tome, J.A. Stamford, R.M. Santos, L.M. Rosario, Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics. J. Physiol. 510(Pt 1), 135–143 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  149. P. Bergsten, J. Westerlund, P. Liss, P.O. Carlsson, Primary in vivo oscillations of metabolism in the pancreas. Diabetes 51, 699–703 (2002)

    CAS  PubMed  Google Scholar 

  150. H. Kindmark, M. Kohler, P. Arkhammar, S. Efendic, O. Larsson, S. Linder, T. Nilsson, P.O. Berggren, Oscillations in cytoplasmic free calcium concentration in human pancreatic islets from subjects with normal and impaired glucose tolerance. Diabetologia 37, 1121–1131 (1994)

    CAS  PubMed  Google Scholar 

  151. F. Martin, B. Soria, Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. Cell Calcium 20, 409–414 (1996)

    CAS  PubMed  Google Scholar 

  152. S.H. Song, L. Kjems, R. Ritzel, S.M. McIntyre, M.L. Johnson, J.D. Veldhuis, P.C. Butler, Pulsatile insulin secretion by human pancreatic islets. J. Clin. Endocrinol. Metab. 87, 213–221 (2002)

    CAS  PubMed  Google Scholar 

  153. K. Tornheim, Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46, 1375–1380 (1997)

    CAS  PubMed  Google Scholar 

  154. R. Bertram, L. Satin, M. Zhang, P. Smolen, A. Sherman, Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J. 87, 3074–3087 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  155. J. Ren, A. Sherman, R. Bertram, P.B. Goforth, C.S. Nunemaker, C.D. Waters, L.S. Satin, Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am. J. Physiol. Endocrinol. Metab. 305, E805–E817 (2013)

    CAS  PubMed  Google Scholar 

  156. B. Chance, R.W. Estabrook, A. Ghosh, Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc. Natl. Acad. Sci. USA 51, 1244–1251 (1964)

    CAS  PubMed Central  PubMed  Google Scholar 

  157. S. Laxman, B.P. Tu, Systems approaches for the study of metabolic cycles in yeast. Curr. Opin. Genet. Dev. 20, 599–604 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  158. B.E. Corkey, K. Tornheim, J.T. Deeney, M.C. Glennon, J.C. Parker, F.M. Matschinsky, N.B. Ruderman, M. Prentki, Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J. Biol. Chem. 263, 4254–4258 (1988)

    CAS  PubMed  Google Scholar 

  159. E.A. Longo, K. Tornheim, J.T. Deeney, B.A. Varnum, D. Tillotson, M. Prentki, B.E. Corkey, Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J. Biol. Chem. 266, 9314–9319 (1991)

    CAS  PubMed  Google Scholar 

  160. M.J. Merrins, A.R. Van Dyke, A.K. Mapp, M.A. Rizzo, L.S. Satin, Direct measurements of oscillatory glycolysis in pancreatic islet beta-cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity. J. Biol. Chem. 288, 33312–33322 (2013)

    CAS  PubMed  Google Scholar 

  161. P.M. Dean, E.K. Matthews, Electrical activity in pancreatic islet cells. Nature 219, 389–390 (1968)

    CAS  PubMed  Google Scholar 

  162. P.M. Dean, E.K. Matthews, Electrical activity in pancreatic islet cells: effect of ions. J. Physiol. (Lond.) 210, 265–275 (1970)

    CAS  Google Scholar 

  163. H.P. Meissner, H. Schmelz, Membrane potential of beta-cells in pancreatic islets. Pflugers Arch. 351, 195–206 (1974)

    CAS  PubMed  Google Scholar 

  164. I. Atwater, C.M. Dawson, B. Ribalet, E. Rojas, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J. Physiol. (Lond.) 288, 575–588 (1979)

    CAS  Google Scholar 

  165. B. Ribalet, P.M. Beigelman, Calcium action potentials and potassium permeability activation in pancreatic beta-cells. Am. J. Physiol. 239, C124–C133 (1980)

    CAS  PubMed  Google Scholar 

  166. B. Ribalet, P.M. Beigelman, Effects of divalent cations on beta-cell electrical activity. Am. J. Physiol. 241, C59–C67 (1981)

    CAS  PubMed  Google Scholar 

  167. P.M. Dean, E.K. Matthews, Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. (Lond.) 210, 255–264 (1970)

    CAS  Google Scholar 

  168. P.M. Beigelman, B. Ribalet, Beta-cell electrical activity in response to high glucose concentration. Diabetes 29, 263–265 (1980)

    CAS  PubMed  Google Scholar 

  169. R.M. Santos, L.M. Rosario, A. Nadal, J. Garcia-Sancho, B. Soria, M. Valdeolmillos, Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 418, 417–422 (1991)

    CAS  PubMed  Google Scholar 

  170. M. Zhang, P. Goforth, R. Bertram, A. Sherman, L. Satin, The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models. Biophys. J. 84, 2852–2870 (2003)

    CAS  PubMed Central  PubMed  Google Scholar 

  171. A.M. Scott, I. Atwater, E. Rojas, A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of langerhans. Diabetologia 21, 470–475 (1981)

    CAS  PubMed  Google Scholar 

  172. C. Ammala, L. Eliasson, K. Bokvist, O. Larsson, F.M. Ashcroft, P. Rorsman, Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. J. Physiol. (Lond.) 472, 665–688 (1993)

    CAS  Google Scholar 

  173. L.S. Satin, Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of langerhans. Endocrine 13, 251–262 (2000)

    CAS  PubMed  Google Scholar 

  174. A.C. Charles, T.G. Hales, Mechanisms of spontaneous calcium oscillations and action potentials in immortalized hypothalamic (GT1-7) neurons. J. Neurophysiol. 73, 56–64 (1995)

    CAS  PubMed  Google Scholar 

  175. K.J. Suter, W.J. Song, T.L. Sampson, J.P. Wuarin, J.T. Saunders, F.E. Dudek, S.M. Moenter, Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: characterization of whole-cell electrophysiological properties and morphology. Endocrinology 141, 412–419 (2000)

    CAS  PubMed  Google Scholar 

  176. C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, Calcium current subtypes in GnRH neurons. Biol. Reprod. 69, 1914–1922 (2003)

    CAS  PubMed  Google Scholar 

  177. Y. Wang, M. Garro, H.A. Dantzler, J.A. Taylor, D.D. Kline, M.C. Kuehl-Kovarik, Age affects spontaneous activity and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Endocrinology 149, 4938–4947 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  178. F. Van Goor, L.Z. Krsmanovic, K.J. Catt, S.S. Stojilkovic, Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels. Mol. Endocrinol. 13, 587–603 (1999)

    PubMed  Google Scholar 

  179. F. Van Goor, L.Z. Krsmanovic, K.J. Catt, S.S. Stojilkovic, Autocrine regulation of calcium influx and gonadotropin-releasing hormone secretion in hypothalamic neurons. Biochem. Cell Biol. 78, 359–370 (2000)

    PubMed  Google Scholar 

  180. J.L. Costantin, A.C. Charles, Modulation of Ca(2+) signaling by K(+) channels in a hypothalamic neuronal cell line (GT1-1). J. Neurophysiol. 85, 295–304 (2001)

    CAS  PubMed  Google Scholar 

  181. D.J. Spergel, U. Kruth, D.F. Hanley, R. Sprengel, P.H. Seeburg, GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19, 2037–2050 (1999)

    CAS  PubMed  Google Scholar 

  182. R.A. DeFazio, S.M. Moenter, Estradiol feedback alters potassium currents and firing properties of gonadotropin-releasing hormone neurons. Mol. Endocrinol. 16, 2255–2265 (2002)

    CAS  PubMed  Google Scholar 

  183. M. Kato, K. Ui-Tei, M. Watanabe, Y. Sakuma, Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 144, 5118–5125 (2003)

    CAS  PubMed  Google Scholar 

  184. S.M. Moenter, Identified GnRH neuron electrophysiology: a decade of study. Brain Res. 1364, 10–24 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  185. D.L. Cook, C.N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311, 271–273 (1984)

    CAS  PubMed  Google Scholar 

  186. F.M. Ashcroft, Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97–118 (1988)

    CAS  PubMed  Google Scholar 

  187. F.M. Ashcroft, D.E. Harrison, S.J. Ashcroft, Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312, 446–448 (1984)

    CAS  PubMed  Google Scholar 

  188. S. Dryselius, P.E. Lund, E. Gylfe, B. Hellman, Variations in ATP-sensitive K+ channel activity provide evidence for inherent metabolic oscillations in pancreatic beta-cells. Biochem. Biophys. Res. Commun. 205, 880–885 (1994)

    CAS  PubMed  Google Scholar 

  189. O. Larsson, H. Kindmark, R. Brandstrom, B. Fredholm, P.O. Berggren, Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc. Natl. Acad. Sci. USA 93, 5161–5165 (1996)

    CAS  PubMed Central  PubMed  Google Scholar 

  190. M. Dufer, D. Haspel, P. Krippeit-Drews, L. Aguilar-Bryan, J. Bryan, G. Drews, Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(-/-) beta cells. Diabetologia 47, 488–498 (2004)

    CAS  PubMed  Google Scholar 

  191. T.A. Kinard, L.S. Satin, An ATP-sensitive cl- channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 44, 1461–1466 (1995)

    CAS  PubMed  Google Scholar 

  192. P.A. Smith, P. Rorsman, F.M. Ashcroft, Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells. Nature 342, 550–553 (1989)

    CAS  PubMed  Google Scholar 

  193. S.O. Gopel, T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renstrom, P. Rorsman, Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J. Gen. Physiol. 114, 759–770 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  194. P.B. Goforth, R. Bertram, F.A. Khan, M. Zhang, A. Sherman, L.S. Satin, Calcium-activated K+ channels of mouse beta-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J. Gen. Physiol. 120, 307–322 (2002)

    CAS  PubMed Central  PubMed  Google Scholar 

  195. M.A. Ravier, M. Nenquin, T. Miki, S. Seino, J.C. Henquin, Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150, 33–45 (2009)

    CAS  PubMed  Google Scholar 

  196. H. Huopio, S.L. Shyng, T. Otonkoski, C.G. Nichols, K(ATP) channels and insulin secretion disorders. Am. J. Physiol. Endocrinol. Metab. 283, E207–E216 (2002)

    CAS  PubMed  Google Scholar 

  197. Z. Chu, M. Tomaiuolo, R. Bertram, S.M. Moenter, Two types of burst firing in gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 24, 1065–1077 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  198. J.C. Marshall, M.L. Griffin, The role of changing pulse frequency in the regulation of ovulation. Hum. Reprod. 8(Suppl 2), 57–61 (1993)

    CAS  PubMed  Google Scholar 

  199. D.R. Matthews, B.A. Naylor, R.G. Jones, G.M. Ward, R.C. Turner, Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 32, 617–621 (1983)

    CAS  PubMed  Google Scholar 

  200. N.K. Porksen, S.R. Munn, J.L. Steers, O. Schmitz, J.D. Veldhuis, P.C. Butler, Mechanisms of sulfonylurea’s stimulation of insulin secretion in vivo: selective amplification of insulin secretory burst mass. Diabetes 45, 1792–1797 (1996)

    CAS  PubMed  Google Scholar 

  201. M.J. Berridge, The AM and FM of calcium signalling. Nature 386, 759–760 (1997)

    CAS  PubMed  Google Scholar 

  202. F.J.E. Manning, A.V. Gyulkhandanyan, L.S. Satin, M.B. Wheeler, Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147, 4655–4663 (2006)

    Google Scholar 

  203. E. Grapengiesser, E. Gylfe, B. Hellman, Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem. Biophys. Res. Commun. 151, 1299–1304 (1988)

    CAS  PubMed  Google Scholar 

  204. M. Valdeolmillos, R.M. Santos, D. Contreras, B. Soria, L.M. Rosario, Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of langerhans. FEBS Lett. 259, 19–23 (1989)

    CAS  PubMed  Google Scholar 

  205. P. Krippeit-Drews, M. Dufer, G. Drews, Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem. Biophys. Res. Commun. 267, 179–183 (2000)

    CAS  PubMed  Google Scholar 

  206. H. Kindmark, M. Kohler, G. Brown, R. Branstrom, O. Larsson, P.O. Berggren, Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic beta-cell. J. Biol. Chem. 276, 34530–34536 (2001)

    CAS  PubMed  Google Scholar 

  207. C.S. Nunemaker, L.S. Satin, Comparison of metabolic oscillations from mouse pancreatic beta cells and islets. Endocrine 25, 61–67 (2004)

    CAS  PubMed  Google Scholar 

  208. S.M. Katzman, M.A. Messerli, D.T. Barry, A. Grossman, T. Harel, J.D. Wikstrom, B.E. Corkey, P.J. Smith, O.S. Shirihai, Mitochondrial metabolism reveals a functional architecture in intact islets of langerhans from normal and diabetic psammomys obesus. Am. J. Physiol. Endocrinol. Metab. 287, E1090–E1099 (2004)

    CAS  PubMed  Google Scholar 

  209. S.K. Jung, C.A. Aspinwall, R.T. Kennedy, Detection of multiple patterns of oscillatory oxygen consumption in single mouse islets of langerhans. Biochem. Biophys. Res. Commun. 259, 331–335 (1999)

    CAS  PubMed  Google Scholar 

  210. H. Ortsater, P. Liss, P.E. Lund, K.E. Akerman, P. Bergsten, Oscillations in oxygen tension and insulin release of individual pancreatic ob/ob mouse islets. Diabetologia 43, 1313–1318 (2000)

    CAS  PubMed  Google Scholar 

  211. D.M. Porterfield, R.F. Corkey, R.H. Sanger, K. Tornheim, P.J. Smith, B.E. Corkey, Oxygen consumption oscillates in single clonal pancreatic beta-cells (HIT). Diabetes 49, 1511–1516 (2000)

    CAS  PubMed  Google Scholar 

  212. D.S. Luciani, S. Misler, K.S. Polonsky, Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J. Physiol. (Lond.) 572, 379–392 (2006)

    CAS  Google Scholar 

  213. C.S. Nunemaker, R. Bertram, A. Sherman, K. Tsaneva-Atanasova, C.R. Daniel, L.S. Satin, Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J. 91, 2082–2096 (2006)

    CAS  PubMed Central  PubMed  Google Scholar 

  214. S.K. Jung, L.M. Kauri, W.J. Qian, R.T. Kennedy, Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca(2+) in single islets of langerhans. J. Biol. Chem. 275, 6642–6650 (2000)

    CAS  PubMed  Google Scholar 

  215. J.T. Deeney, M. Kohler, K. Kubik, G. Brown, V. Schultz, K. Tornheim, B.E. Corkey, P.O. Berggren, Glucose-induced metabolic oscillations parallel those of Ca(2+) and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J. Biol. Chem. 276, 36946–36950 (2001)

    CAS  PubMed  Google Scholar 

  216. L. Wildt, A. Häusler, G. Marshall, J.S. Hutchison, T.M. Plant, P.E. Belchetz, E. Knobil, Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109, 376–385 (1981)

    Google Scholar 

  217. C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, A targeted extracellular approach for recording long-term firing patterns of excitable cells: a practical guide. Biol. Proced. Online 5, 53–62 (2003)

    Google Scholar 

  218. C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, Estradiol-sensitive afferents modulate long-term episodic firing patterns of GnRH neurons. Endocrinology 143(6), 2284–2292 (2002)

    Google Scholar 

Download references

Acknowledgments

Supported by NIH Grants RO1DK46409 to LSS and RO1DK089182 to CSN.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Nunemaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunemaker, C.S., Satin, L.S. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 47, 49–63 (2014). https://doi.org/10.1007/s12020-014-0212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0212-3

Keywords

Navigation