, Volume 45, Issue 2, pp 288–292 | Cite as

New technologies aiding dietary programmes for weight control: the oral glucose spray

  • Yeganeh Manon KhazraiEmail author
  • Ernesto Maddaloni
  • Maria Altomare
  • Fabio Cacciapaglia
  • Paolo Pozzilli
Original Article


To determine whether the administration of small amounts of glucose through an oral spray device (GSD) facilitates weight loss in overweight/obese subjects involved in a lifestyle modification programme. We randomly assigned 56 overweight/obese subjects to either the treatment group (n = 32) or the control group (n = 24). All subjects in both groups followed a structured dietary programme of 6,280.2 kJ (1,500 kcal)/day and exercised minimum 150 min a week and were followed-up for a period of 60 days. Subjects assigned to the treatment group were asked to spray, during early symptoms of neuroglycopenia, 10 puffs by GSD. GSD is a device that delivers to the buccal mucosa 50 mg of glucose per puff. A mean weight loss of 3.5 ± 3.0 kg in GSD-treated group compared to 1.7 ± 2.1 kg in control group (p = 0.01) was observed. Significant differences regarding reduction of BMI (−1.3 ± 1.0 vs −0.7 ± 0.8 kg/m2; p = 0.01) and waist circumference (−3.5 ± 3.2 vs −0.9 ± 3.5 cm; p = 0.02) were also detected. A short-term use of GSD, in association with dietary restriction and exercise, is helpful in improving weight loss and in reducing waist circumference in overweight/obese subjects.


Obesity Weight loss Glucose spray Dietary programme 


Conflict of interest

This study was supported by an educational grant to the University Campus Bio-Medico of Rome by Generex Biotechnology Inc. Generex Biotechnology Inc. gave us Glucose Rapid Spray for the trial. The sponsor had no role in the study design, data collection, data analysis or interpretation.


  1. 1.
    World Health Organization (WHO), Nutrition. Controlling the global obesity epidemic (2010), Accessed 15 Jan 2011
  2. 2.
    Trust for America’s Health, F as in fat: how obesity policies are failing in America (2010), Accessed 20 Jan 2011
  3. 3.
    S. O’Rahilly, Human genetics illuminates the paths to metabolic disease. Nature 19, 307–314 (2009)CrossRefGoogle Scholar
  4. 4.
    C.J. Lavie, R.V. Milani, H.O. Ventura, Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 53, 1925–1932 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    J.P. Chaput, A. Tremblay, The glucostatic theory of appetite control and the risk of obesity and diabetes. Int. J. Obes. 33, 46–53 (2009)CrossRefGoogle Scholar
  6. 6.
    B.M. Popkin, P. Gordon-Larsen, The nutrition transition: worldwide obesity dynamics and their determinants. Int. J. Obes. Relat. Metab. Disord. 28, S2–S9 (2004)PubMedCrossRefGoogle Scholar
  7. 7.
    R.K. Johnson, L.J. Appel, M. Brands, B.V. Howard, M. Lefevre, R.H. Lustig, F. Sacks, L.M. Steffen, J. Wylie-Rosett, American Heart Association nutrition committee of the council on nutrition, physical activity, and metabolism and the council on epidemiology and prevention.: dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120, 1011–1020 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    J.O. Hill, Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev 27, 750–761 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    W. Kopp, High-insulinogenic nutrition—an etiologic factor for obesity and the metabolic syndrome? Metabolism 52, 840–844 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    S.B. Roberts, Glycemic index and satiety. Nutr. Clin. Care 6, 20–26 (2003)PubMedGoogle Scholar
  11. 11.
    W.D. McArdle, F.L. Katch, V.L. Katch, Essentials of exercise physiology (Lippincott, Williams & Wilkins, Baltimore, 2000)Google Scholar
  12. 12.
    J.C. Brand-Miller, S.H. Holt, D.B. Pawlak, J. McMillan, Glycemic index and obesity. Am. J. Clin. Nutr. 76, 281S–285S (2002)PubMedGoogle Scholar
  13. 13.
    L. Velázquez-López, E. González-Figueroa, P. Medina-Bravo, I. Pineda-Del Aquila, L. Avila-Jiménez, R. Ramos-Hernández, M. Klunder–Klunder, J. Escobedo-de la Peña, Low calorie and carbohydrate diet: to improve the cardiovascular risk indicators in overweight or obese adults with prediabetes. Endocrine (2012). doi: 10.1007/s12020-012-9775-z PubMedGoogle Scholar
  14. 14.
    P. Cryer, The prevention and correction of hypoglycemia, in Handbook of physiology, ed. by L. Jefferson, A. Cherrington, H. Goodman (Oxford University Press, New York, 2001), pp. 1057–1092Google Scholar
  15. 15.
    N.M. Sanders, D.P. Figlewicz, G.J. Taborsky Jr, C.W. Wilkinson, W. Daumen, B.E. Levin, Feeding and neuroendocrine responses after recurrent insulin-induced hypoglycaemia. Physiol. Behav. 87, 700–706 (2006)PubMedCrossRefGoogle Scholar
  16. 16.
    Y.M. Khazrai, F. Cacciapaglia, A. Picardi, G. Beretta Anguissola, C. Guglielmi, S. Manfrini, P. Pozzilli, Treatment of symptoms of neuroglycopenia with glucose RapidSprayTM to avoid rebound hyperglycaemia. Diabetes 57(suppl 1), A 564 (2008)Google Scholar
  17. 17.
    K.A. McAuley, K.J. Smith, R.W. Taylor, R.T. McLay, S.M. Williams, J.I. Mann, Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. Int. J. Obes. 30, 342–349 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Flint, A. Raben, J.E. Blundell, A. Astrup, Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 24, 38–48 (2000)PubMedCrossRefGoogle Scholar
  19. 19.
    G. Reaven, F. Abbasi, T. McLaughlin, Obesity, insulin resistance, and cardiovascular disease. Recent Prog. Horm. Res. 59, 207–223 (2004)PubMedCrossRefGoogle Scholar
  20. 20.
    D.E. Thomas, E.J. Elliott, L. Baur, Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst. Rev. 3, CD005105 (2007)PubMedGoogle Scholar
  21. 21.
    Y.M. Khazrai, F. Cacciapaglia, A. Palermo, P. Pozzilli, The use of glucose spray device to control progression towards hypoglycaemia. Endocrine 42, 442–444 (2012)PubMedCrossRefGoogle Scholar
  22. 22.
    K. Hodgson, B. Govan, N. Ketheesan, J. Morris, Dietary composition of carbohydrate contributes to the development of experimental type 2 diabetes. Endocrine 43, 447–451 (2013)PubMedCrossRefGoogle Scholar
  23. 23.
    E.S. Chambers, M.W. Bridge, D.A. Jones, Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J. Physiol. 15, 1779–1794 (2009)CrossRefGoogle Scholar
  24. 24.
    J.M. Carter, A.E. Jeukendrup, D.A. Jones, The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med. Sci. Sports Exerc. 36, 2107–2111 (2004)PubMedCrossRefGoogle Scholar
  25. 25.
    C. Colantuoni, J. Schwenker, J. McCarthy, P. Rada, B. Ladenheim, J.L. Cadet, G.J. Schwartz, T.H. Moran, B.G. Hoebel, Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. NeuroReport 12, 3549–3552 (2001)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yeganeh Manon Khazrai
    • 1
    Email author
  • Ernesto Maddaloni
    • 1
  • Maria Altomare
    • 1
  • Fabio Cacciapaglia
    • 1
  • Paolo Pozzilli
    • 1
  1. 1.Department of Endocrinology and DiabetesUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations