Skip to main content
Log in

Diagnostic biomarkers of differentiated thyroid cancer

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The incidence of thyroid cancer has been increasing all around the world in the past decades. Early detection is one of the keys to reduce the mortality. Currently, fine-needle aspiration (FNA) guides the management of patients with a thyroid nodule. The use of FNA can reduce unnecessary thyroid surgery by twenty-five percent. However, the prevalence of non-diagnostic and indeterminate cytology from FNA is still high, approximately thirty percent. Many biomarkers were developed to differentiate between the benign and malignant thyroid nodule. This review summarizes each diagnostic biomarker of differentiated thyroid cancer. Sensitivity, specificity, and positive and negative predictive values of individual cytological laboratory need to be considered before implementation of each biomarker. Moreover, follow-up is still mandatory in negative biomarker tests because all genomic and proteomic alterations in thyroid cancer are still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Davies, H.G. Welch, Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295(18), 2164–2167 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. S. Liu, R. Semenciw, A.M. Ugnat, Y. Mao, Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects. Br. J. Cancer 85(9), 1335–1339 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. J.R. Burgess, Temporal trends for thyroid carcinoma in Australia: an increasing incidence of papillary thyroid carcinoma (1982–1997). Thyroid 12(2), 141–149 (2002)

    Article  PubMed  Google Scholar 

  4. M. Colonna, P. Grosclaude, L. Remontet, C. Schvartz, J. Mace-Lesech, M. Velten, A. Guizard, B. Tretarre, A.V. Buemi, P. Arveux, J. Esteve, Incidence of thyroid cancer in adults recorded by French cancer registries (1978–1997). Eur. J. Cancer 38(13), 1762–1768 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11), 1167–1214 (2009)

    Article  PubMed  Google Scholar 

  6. H. Gharib, J.R. Goellner, Fine-needle aspiration biopsy of the thyroid: an appraisal. Ann. Intern. Med. 118(4), 282–289 (1993)

    Article  PubMed  CAS  Google Scholar 

  7. H. Gharib, E. Papini, R. Paschke, D.S. Duick, R. Valcavi, L. Hegedus, P. Vitti, American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and EuropeanThyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocr. Pract. 16(Suppl 1), 1–43 (2010)

    Article  PubMed  Google Scholar 

  8. E.S. Cibas, S.Z. Ali, The Bethesda System for reporting thyroid cytopathology. Thyroid 19(11), 1159–1165 (2009)

    Article  PubMed  Google Scholar 

  9. V.Y. Jo, E.B. Stelow, S.M. Dustin, K.Z. Hanley, Malignancy risk for fine-needle aspiration of thyroid lesions according to the Bethesda System for Reporting Thyroid Cytopathology. Am. J. Clin. Pathol. 134(3), 450–456 (2010)

    Article  PubMed  Google Scholar 

  10. E.B. Stelow, C. Woon, K.A. Atkins, R.H. Bardales, H.P. Cathro, H.F. Frierson Jr, M.W. Stanley, K. Savik, S.E. Pambuccian, Interobserver variability with the interpretation of thyroid FNA specimens showing predominantly Hurthle cells. Am. J. Clin. Pathol. 126(4), 580–583 (2006)

    Article  PubMed  Google Scholar 

  11. K.M. Clary, J.L. Condel, Y. Liu, D.R. Johnson, D.M. Grzybicki, S.S. Raab, Interobserver variability in the fine needle aspiration biopsy diagnosis of follicular lesions of the thyroid gland. Acta Cytol. 49(4), 378–382 (2005)

    Article  PubMed  Google Scholar 

  12. R. Gerhard, G. da Cunha Santos, Inter- and intraobserver reproducibility of thyroid fine needle aspiration cytology: an analysis of discrepant cases. Cytopathology 18(2), 105–111 (2007)

    Article  PubMed  CAS  Google Scholar 

  13. Nasrollah, N., Trimboli, P., Guidobaldi, L., Cicciarella Modica, D.D., Ventura, C., Ramacciato, G., Taccogna, S., Romanelli, F., Valabrega, S., Crescenzi, A.: Thin core biopsy should help to discriminate thyroid nodules cytologically classified as indeterminate. A new sampling technique. Endocrine (2012)

  14. N. Dhomen, R. Marais, New insight into BRAF mutations in cancer. Curr. Opin. Genet. Dev. 17(1), 31–39 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. I. Palona, H. Namba, N. Mitsutake, D. Starenki, A. Podtcheko, I. Sedliarou, A. Ohtsuru, V. Saenko, Y. Nagayama, K. Umezawa, S. Yamashita, BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology 147(12), 5699–5707 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. M.C. Zatelli, G. Trasforini, S. Leoni, G. Frigato, M. Buratto, F. Tagliati, R. Rossi, L. Cavazzini, E. Roti, E.C. degli Uberti, BRAF V600E mutation analysis increases diagnostic accuracy for papillary thyroid carcinoma in fine-needle aspiration biopsies. Eur. J. Endocrinol. 161(3), 467–473 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. M. Xing, BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 12(2), 245–262 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. Y.E. Nikiforov, D.L. Steward, T.M. Robinson-Smith, B.R. Haugen, J.P. Klopper, Z. Zhu, J.A. Fagin, M. Falciglia, K. Weber, M.N. Nikiforova, Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J. Clin. Endocrinol. Metab. 94(6), 2092–2098 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. S.W. Kim, J.I. Lee, J.W. Kim, C.S. Ki, Y.L. Oh, Y.L. Choi, J.H. Shin, H.K. Kim, H.W. Jang, J.H. Chung, BRAFV600E mutation analysis in fine-needle aspiration cytology specimens for evaluation of thyroid nodule: a large series in a BRAFV600E-prevalent population. J. Clin. Endocrinol. Metab. 95(8), 3693–3700 (2010)

    Article  PubMed  CAS  Google Scholar 

  20. E. Brzezianska, D. Pastuszak-Lewandoska, K. Wojciechowska, M. Migdalska-Sek, A. Cyniak-Magierska, E. Nawrot, A. Lewinski, Investigation of V600E BRAF mutation in papillary thyroid carcinoma in the Polish population. Neuro Endocrinol. Lett. 28(4), 351–359 (2007)

    PubMed  CAS  Google Scholar 

  21. G. Oler, J.M. Cerutti, High prevalence of BRAF mutation in a Brazilian cohort of patients with sporadic papillary thyroid carcinomas: correlation with more aggressive phenotype and decreased expression of iodide-metabolizing genes. Cancer 115(5), 972–980 (2009)

    Article  PubMed  CAS  Google Scholar 

  22. K.H. Kim, D.W. Kang, S.H. Kim, I.O. Seong, D.Y. Kang, Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med. J. 45(5), 818–821 (2004)

    PubMed  CAS  Google Scholar 

  23. S. Girlando, L.V. Cuorvo, M. Bonzanini, L. Morelli, P. Amadori, P. Dalla Palma, M. Barbareschi, High prevalence of B-RAF mutation in papillary carcinoma of the thyroid in north-east Italy. Int. J. Surg. Pathol. 18(3), 173–176 (2010)

    Article  PubMed  CAS  Google Scholar 

  24. Y.E. Nikiforov, Molecular diagnostics of thyroid tumors. Arch. Pathol. Lab. Med. 135(5), 569–577 (2011)

    PubMed  CAS  Google Scholar 

  25. V. Vasko, M. Ferrand, J. Di Cristofaro, P. Carayon, J.F. Henry, C. de Micco, Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88(6), 2745–2752 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. V.V. Vasko, J. Gaudart, C. Allasia, V. Savchenko, J. Di Cristofaro, M. Saji, M.D. Ringel, C. De Micco, Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur. J. Endocrinol. 151(6), 779–786 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. P.E. Macchia, P. Lapi, H. Krude, M.T. Pirro, C. Missero, L. Chiovato, A. Souabni, M. Baserga, V. Tassi, A. Pinchera, G. Fenzi, A. Gruters, M. Busslinger, R. Di Lauro, PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat. Genet. 19(1), 83–86 (1998)

    Article  PubMed  CAS  Google Scholar 

  28. M. Pasca di Magliano, R. Di Lauro, M. Zannini, Pax8 has a key role in thyroid cell differentiation. Proc. Natl. Acad. Sci. U S A 97(24), 13144–13149 (2000)

    Article  PubMed  CAS  Google Scholar 

  29. N.L. Eberhardt, S.K. Grebe, B. McIver, H.V. Reddi, The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol. Cell. Endocrinol. 321(1), 50–56 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. T. Dwight, S.R. Thoppe, T. Foukakis, W.O. Lui, G. Wallin, A. Hoog, T. Frisk, C. Larsson, J. Zedenius, Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88(9), 4440–4445 (2003)

    Article  PubMed  CAS  Google Scholar 

  31. A.R. Marques, C. Espadinha, A.L. Catarino, S. Moniz, T. Pereira, L.G. Sobrinho, V. Leite, Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87(8), 3947–3952 (2002)

    Article  PubMed  CAS  Google Scholar 

  32. M.N. Nikiforova, R.A. Lynch, P.W. Biddinger, E.K. Alexander, G.W. Dorn 2nd, G. Tallini, T.G. Kroll, Y.E. Nikiforov, RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88(5), 2318–2326 (2003)

    Article  PubMed  CAS  Google Scholar 

  33. Y. Hibi, T. Nagaya, F. Kambe, T. Imai, H. Funahashi, A. Nakao, H. Seo, Is thyroid follicular cancer in Japanese caused by a specific t(2; 3)(q13; p25) translocation generating Pax8-PPAR gamma fusion mRNA? Endocr. J. 51(3), 361–366 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. N. Mitsutake, M. Miyagishi, S. Mitsutake, N. Akeno, C. Mesa Jr, J.A. Knauf, L. Zhang, K. Taira, J.A. Fagin, BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology 147(2), 1014–1019 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. M. Xing, Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20(7), 697–706 (2010)

    Article  PubMed  CAS  Google Scholar 

  36. Y.E. Nikiforov, J.M. Rowland, K.E. Bove, H. Monforte-Munoz, J.A. Fagin, Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57(9), 1690–1694 (1997)

    PubMed  CAS  Google Scholar 

  37. M. Santoro, F. Carlomagno, I.D. Hay, M.A. Herrmann, M. Grieco, R. Melillo, M.A. Pierotti, I. Bongarzone, G. Della Porta, N. Berger et al., Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J. Clin. Invest. 89(5), 1517–1522 (1992)

    Article  PubMed  CAS  Google Scholar 

  38. R. Elisei, C. Romei, T. Vorontsova, B. Cosci, V. Veremeychik, E. Kuchinskaya, F. Basolo, E.P. Demidchik, P. Miccoli, A. Pinchera, F. Pacini, RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J. Clin. Endocrinol. Metab. 86(7), 3211–3216 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. Y.E. Nikiforov, RET/PTC rearrangement in thyroid tumors. Endocr. Pathol. 13(1), 3–16 (2002)

    Article  PubMed  CAS  Google Scholar 

  40. N.P. Ohori, M.N. Nikiforova, K.E. Schoedel, S.O. LeBeau, S.P. Hodak, R.R. Seethala, S.E. Carty, J.B. Ogilvie, L. Yip, Y.E. Nikiforov, Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol. 118(1), 17–23 (2010)

    Article  PubMed  CAS  Google Scholar 

  41. B. Zhang, X. Pan, G.P. Cobb, T.A. Anderson, microRNAs as oncogenes and tumor suppressors. Dev. Biol. 302(1), 1–12 (2007)

    Article  PubMed  CAS  Google Scholar 

  42. H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy, S. Volinia, G.A. Calin, C.G. Liu, K. Franssila, S. Suster, R.T. Kloos, C.M. Croce, A. de la Chapelle, The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U S A 102(52), 19075–19080 (2005)

    Article  PubMed  CAS  Google Scholar 

  43. M.N. Nikiforova, G.C. Tseng, D. Steward, D. Diorio, Y.E. Nikiforov, MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 93(5), 1600–1608 (2008)

    Article  PubMed  CAS  Google Scholar 

  44. F. Weber, R.E. Teresi, C.E. Broelsch, A. Frilling, C. Eng, A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab. 91(9), 3584–3591 (2006)

    Article  PubMed  CAS  Google Scholar 

  45. Y.T. Chen, N. Kitabayashi, X.K. Zhou, T.J. Fahey 3rd, T. Scognamiglio, MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol. 21(9), 1139–1146 (2008)

    Article  PubMed  CAS  Google Scholar 

  46. Vriens, M.R., Weng, J., Suh, I., Huynh, N., Guerrero, M.A., Shen, W.T., Duh, Q.Y., Clark, O.H., Kebebew, E.: MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer (2011)

  47. Keutgen, X.M., Filicori, F., Crowley, M.J., Wang, Y., Scognamiglio, T., Hoda, R., Buitrago, D., Cooper, D., Zeiger, M.A., Zarnegar, R., Elemento, O., Fahey, T.J., 3rd: A Panel of four MicroRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin. Cancer. Res. (2012)

  48. D. Chudova, J.I. Wilde, E.T. Wang, H. Wang, N. Rabbee, C.M. Egidio, J. Reynolds, E. Tom, M. Pagan, C.T. Rigl, L. Friedman, C.C. Wang, R.B. Lanman, M. Zeiger, E. Kebebew, J. Rosai, G. Fellegara, V.A. LiVolsi, G.C. Kennedy, Molecular classification of thyroid nodules using high-dimensionality genomic data. J. Clin. Endocrinol. Metab. 95(12), 5296–5304 (2010)

    Article  PubMed  CAS  Google Scholar 

  49. D.S. Duick, J.P. Klopper, J.C. Diggans, L. Friedman, G.C. Kennedy, R.B. Lanman, B. McIver, The impact of benign gene expression classifier test results on the endocrinologist-patient decision to operate on patients with thyroid nodules with indeterminate fine-needle aspiration cytopathology. Thyroid 22(10), 996–1001 (2012)

    Article  PubMed  CAS  Google Scholar 

  50. K. Krause, B. Jessnitzer, D. Fuhrer, Proteomics in thyroid tumor research. J. Clin. Endocrinol. Metab. 94(8), 2717–2724 (2009)

    Article  PubMed  CAS  Google Scholar 

  51. M.R. Castro, H. Gharib, Continuing controversies in the management of thyroid nodules. Ann. Intern. Med. 142(11), 926–931 (2005)

    Article  PubMed  Google Scholar 

  52. H.A. Saleh, J. Feng, F. Tabassum, O. Al-Zohaili, M. Husain, T. Giorgadze, Differential expression of galectin-3, CK19, HBME1, and Ret oncoprotein in the diagnosis of thyroid neoplasms by fine needle aspiration biopsy. Cytojournal 6, 18 (2009)

    Article  PubMed  Google Scholar 

  53. E. Saggiorato, R. De Pompa, M. Volante, S. Cappia, F. Arecco, A.P. Dei Tos, F. Orlandi, M. Papotti, Characterization of thyroid ‘follicular neoplasms’ in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr. Relat. Cancer 12(2), 305–317 (2005)

    Article  PubMed  CAS  Google Scholar 

  54. F.T. Liu, G.A. Rabinovich, Galectins as modulators of tumour progression. Nat. Rev. Cancer 5(1), 29–41 (2005)

    Article  PubMed  CAS  Google Scholar 

  55. Y. Takenaka, H. Inohara, T. Yoshii, K. Oshima, S. Nakahara, S. Akahani, Y. Honjo, Y. Yamamoto, A. Raz, T. Kubo, Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett. 195(1), 111–119 (2003)

    Article  PubMed  CAS  Google Scholar 

  56. G. Elad-Sfadia, R. Haklai, E. Balan, Y. Kloog, Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279(33), 34922–34930 (2004)

    Article  PubMed  CAS  Google Scholar 

  57. P. Mehrotra, A. Okpokam, R. Bouhaidar, S.J. Johnson, J.A. Wilson, B.R. Davies, T.W. Lennard, Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology 45(5), 493–500 (2004)

    Article  PubMed  CAS  Google Scholar 

  58. M. Niedziela, J. Maceluch, E. Korman, Galectin-3 is not an universal marker of malignancy in thyroid nodular disease in children and adolescents. J. Clin. Endocrinol. Metab. 87(9), 4411–4415 (2002)

    Article  PubMed  CAS  Google Scholar 

  59. A. Bartolazzi, A. Gasbarri, M. Papotti, G. Bussolati, T. Lucante, A. Khan, H. Inohara, F. Marandino, F. Orlandi, F. Nardi, A. Vecchione, R. Tecce, O. Larsson, Thyroid Cancer Study Group, Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet 357(9269), 1644–1650 (2001)

    Article  PubMed  CAS  Google Scholar 

  60. A. Sanabria, A.L. Carvalho, V. Piana de Andrade, J. Pablo Rodrigo, J.G. Vartanian, A. Rinaldo, M.K. Ikeda, K.O. Devaney, J. Magrin, F. Augusto Soares, A. Ferlito, L.P. Kowalski, Is galectin-3 a good method for the detection of malignancy in patients with thyroid nodules and a cytologic diagnosis of “follicular neoplasm”? A critical appraisal of the evidence. Head Neck 29(11), 1046–1054 (2007)

    Article  PubMed  Google Scholar 

  61. C.G. Chiu, S.S. Strugnell, O.L. Griffith, S.J. Jones, A.M. Gown, B. Walker, I.R. Nabi, S.M. Wiseman, Diagnostic utility of galectin-3 in thyroid cancer. Am. J. Pathol. 176(5), 2067–2081 (2010)

    Article  PubMed  CAS  Google Scholar 

  62. A. Bartolazzi, G. Bussolati, Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology 48(2), 212–213 (2006)

    Article  PubMed  CAS  Google Scholar 

  63. Bartolazzi, A., Papotti, M., Orlandi, F.: Methodological considerations regarding the use of galectin-3 expression analysis in preoperative evaluation of thyroid nodules. J. Clin. Endocrinol. Metab. 88(2), 950; author reply 950–951 (2003)

    Google Scholar 

  64. A. Bartolazzi, F. Orlandi, E. Saggiorato, M. Volante, F. Arecco, R. Rossetto, N. Palestini, E. Ghigo, M. Papotti, G. Bussolati, M.P. Martegani, F. Pantellini, A. Carpi, M.R. Giovagnoli, S. Monti, V. Toscano, S. Sciacchitano, G.M. Pennelli, C. Mian, M.R. Pelizzo, M. Rugge, G. Troncone, L. Palombini, G. Chiappetta, G. Botti, A. Vecchione, R. Bellocco, Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol. 9(6), 543–549 (2008)

    Article  PubMed  CAS  Google Scholar 

  65. A. Bartolazzi, C. Bellotti, S. Sciacchitano, Methodology and technical requirements of the galectin-3 test for the preoperative characterization of thyroid nodules. Appl. Immunohistochem. Mol. Morphol. 20(1), 2–7 (2012)

    Article  PubMed  CAS  Google Scholar 

  66. A. Carpi, G. Rossi, G.D. Coscio, G. Iervasi, A. Nicolini, F. Carpi, J.I. Mechanick, A. Bartolazzi, Galectin-3 detection on large-needle aspiration biopsy improves preoperative selection of thyroid nodules: a prospective cohort study. Ann. Med. 42(1), 70–78 (2010)

    Article  PubMed  CAS  Google Scholar 

  67. H. Inohara, T. Segawa, A. Miyauchi, T. Yoshii, S. Nakahara, A. Raz, M. Maeda, E. Miyoshi, N. Kinoshita, H. Yoshida, M. Furukawa, Y. Takenaka, Y. Takamura, Y. Ito, N. Taniguchi, Cytoplasmic and serum galectin-3 in diagnosis of thyroid malignancies. Biochem. Biophys. Res. Commun. 376(3), 605–610 (2008)

    Article  PubMed  CAS  Google Scholar 

  68. G. Fadda, E.D. Rossi, M. Raffaelli, A. Pontecorvi, S. Sioletic, F. Morassi, C.P. Lombardi, G.F. Zannoni, G. Rindi, Follicular thyroid neoplasms can be classified as low- and high-risk according to HBME-1 and Galectin-3 expression on liquid-based fine-needle cytology. Eur. J. Endocrinol. 165(3), 447–453 (2011)

    Article  PubMed  CAS  Google Scholar 

  69. R. Jain, S. Fischer, S. Serra, R. Chetty, The use of Cytokeratin 19 (CK19) immunohistochemistry in lesions of the pancreas, gastrointestinal tract, and liver. Appl. Immunohistochem. Mol. Morphol. 18(1), 9–15 (2010)

    Article  PubMed  CAS  Google Scholar 

  70. B. Cochand-Priollet, H. Dahan, M. Laloi-Michelin, M. Polivka, M. Saada, P. Herman, P.J. Guillausseau, L. Hamzi, N. Pote, E. Sarfati, M. Wassef, H. Combe, D. Raulic-Raimond, P. Chedin, V. Medeau, D. Casanova, R. Kania, Immunocytochemistry with cytokeratin 19 and anti-human mesothelial cell antibody (HBME1) increases the diagnostic accuracy of thyroid fine-needle aspirations: preliminary report of 150 liquid-based fine-needle aspirations with histological control. Thyroid 21(10), 1067–1073 (2011)

    Article  PubMed  CAS  Google Scholar 

  71. L. Yip, C. Farris, A.S. Kabaker, S.P. Hodak, M.N. Nikiforova, K.L. McCoy, M.T. Stang, K.J. Smith, Y.E. Nikiforov, S.E. Carty, Cost impact of molecular testing for indeterminate thyroid nodule fine-needle aspiration biopsies. J. Clin. Endocrinol. Metab. 97(6), 1905–1912 (2012)

    Article  PubMed  CAS  Google Scholar 

  72. H. Li, K.A. Robinson, B. Anton, I.J. Saldanha, P.W. Ladenson, Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J. Clin. Endocrinol. Metab. 96(11), E1719–E1726 (2011)

    Article  PubMed  CAS  Google Scholar 

  73. M. Najafzadeh, C.A. Marra, L.D. Lynd, S.M. Wiseman, Cost-effectiveness of using a molecular diagnostic test to improve preoperative diagnosis of thyroid cancer. Value Health 15(8), 1005–1013 (2012)

    Article  PubMed  Google Scholar 

  74. M.N. Nikiforova, P.W. Biddinger, C.M. Caudill, T.G. Kroll, Y.E. Nikiforov, PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol. 26(8), 1016–1023 (2002)

    Article  PubMed  Google Scholar 

  75. P. Castro, A.P. Rebocho, R.J. Soares, J. Magalhaes, L. Roque, V. Trovisco, I. Vieira de Castro, M. Cardoso-de-Oliveira, E. Fonseca, P. Soares, M. Sobrinho-Simoes, PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 91(1), 213–220 (2006)

    Article  PubMed  CAS  Google Scholar 

  76. L. Santarpia, J.N. Myers, S.I. Sherman, F. Trimarchi, G.L. Clayman, A.K. El-Naggar, Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 116(12), 2974–2983 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Navjeet Singh Rehal and Kimberly Windsor for the English editing of the manuscript.

Disclosure

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tada Kunavisarut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunavisarut, T. Diagnostic biomarkers of differentiated thyroid cancer. Endocrine 44, 616–622 (2013). https://doi.org/10.1007/s12020-013-9974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9974-2

Keywords

Navigation