Skip to main content

Advertisement

Log in

Relationship of lean body mass with bone mass and bone mineral density in the general Korean population

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

We investigated association of lean body mass with bone mass (BM) and bone mineral density (BMD) according to gender and menopausal status in the general Korean population. Participants included 4,299 males and 5,226 females who were 20 years of age or older from the fourth and fifth Korea National Health and Nutritional Examination Surveys (2009–2010). Dual-energy X-ray absorptiometry was used for measurement of BMD and body composition. BMD was measured in the femur and lumbar spine. Appendicular skeletal muscle mass (ASM) was defined as the sum of the lean soft tissue masses for the arms and legs. Analysis was performed after categorizing participants into four groups (males <50 years, males ≥50 years, premenopausal females, and postmenopausal females). In males, the highest ASM was observed in the 20–29-year group and then showed a gradual decrease as age increased, and BM and BMD showed similar patterns of change, while in females, ASM, BMD, and BM reached the peak level in the 40–49-year group and then decreased. In multiple regression analysis, after adjusting for confounding factors, the results showed an independent association of ASM with an increase in BM and BMD (P < 0.05). After adjusting for confounding factors, total fat mass showed a significant association with BM (P < 0.05). These aforementioned relationships were commonly observed on both femur and lumbar spine in every group. Lean body mass showed an independent association with increased BM and BMD, regardless of gender, age in men, and menopausal status in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 94, 646–650 (1993)

    Google Scholar 

  2. C. Cooper, E.J. Atkinson, S.J. Jacobsen, W.M. O’Fallon, L.J. Melton 3rd et al., Population-based study of survival after osteoporotic fractures. Am. J. Epidemiol. 137, 1001–1005 (1993)

    CAS  PubMed  Google Scholar 

  3. I.H. Rosenberg, Sarcopenia: origins and clinical relevance. J. Nutr. 127, 990S–991S (1997)

    CAS  PubMed  Google Scholar 

  4. J.E. Morley, R.N. Baumgartner, R. Roubenoff, J. Mayer, K.S. Nair, Sarcopenia. J. Lab. Clin. Med. 137, 231–243 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. B.H. Goodpaster, S.W. Park, T.B. Harris, S.B. Kritchevsky, M. Nevitt et al., The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1059–1064 (2006)

    Article  PubMed  Google Scholar 

  6. K.E. Ensrud, S.K. Ewing, B.C. Taylor, H.A. Fink, K.L. Stone et al., Frailty and risk of falls, fracture, and mortality in older women: the study of osteoporotic fractures. J. Gerontol. A Biol. Sci. Med. Sci. 62, 744–751 (2007)

    Article  PubMed  Google Scholar 

  7. N. Binkley, A perspective on male osteoporosis. Best Pract. Res. Clin. Rheumatol. 23, 755–768 (2009)

    Article  PubMed  Google Scholar 

  8. G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. E. Seeman, J.L. Hopper, N.R. Young, C. Formica, P. Goss et al., Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am. J. Physiol. 270, E320–E327 (1996)

    CAS  PubMed  Google Scholar 

  10. H. Blain, A. Jaussent, E. Thomas, J.P. Micallef, A.M. Dupuy et al., Appendicular skeletal muscle mass is the strongest independent factor associated with femoral neck bone mineral density in adult and older men. Exp. Gerontol. 45, 679–684 (2010)

    Article  PubMed  Google Scholar 

  11. A. Coin, E. Perissinotto, G. Enzi, M. Zamboni, E.M. Inelmen et al., Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia. Eur. J. Clin. Nutr. 62, 802–809 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. I. Zofkova, Hormonal aspects of the muscle-bone unit. Physiol. Res. 57(Suppl 1), S159–S169 (2008)

    CAS  PubMed  Google Scholar 

  13. H.M. Frost, Bone’s mechanostat: a 2003 update. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 275, 1081–1101 (2003)

    Article  PubMed  Google Scholar 

  14. M.R. Forwood, C.H. Turner, Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone 17, 197S–205S (1995)

    CAS  PubMed  Google Scholar 

  15. L. Cianferotti, M.L. Brandi, Muscle-bone interactions: basic and clinical aspects. Endocrine (2013). doi:10.1007/s12020-013-0026-8

    PubMed  Google Scholar 

  16. H. Sievanen, Hormonal influences on the muscle-bone feedback system: a perspective. J. Musculoskelet. Neuronal Interact. 5, 255–261 (2005)

    CAS  PubMed  Google Scholar 

  17. S.M. Pluijm, M. Visser, J.H. Smit, C. Popp-Snijders, J.C. Roos et al., Determinants of bone mineral density in older men and women: body composition as mediator. J. Bone Miner. Res. 16, 2142–2151 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. P.S. Genaro, G.A. Pereira, M.M. Pinheiro, V.L. Szejnfeld, L.A. Martini, Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch. Gerontol. Geriatr. 51, 295–298 (2010)

    Article  PubMed  Google Scholar 

  19. D.R. Taaffe, J.A. Cauley, M. Danielson, M.C. Nevitt, T.F. Lang et al., Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the Health, Aging, and Body Composition Study. J. Bone Miner. Res. 16, 1343–1352 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. H. Blain, A. Vuillemin, A. Teissier, B. Hanesse, F. Guillemin et al., Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology 47, 207–212 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. S. Verschueren, E. Gielen, T.W. O’Neill, S.R. Pye, J.E. Adams et al., Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos. Int. 24, 87–98 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. S. Kirchengast, J. Huber, Sex-specific associations between soft tissue body composition and bone mineral density among older adults. Ann. Hum. Biol. 39, 206–213 (2012)

    Article  PubMed  Google Scholar 

  23. C.G. Gjesdal, J.I. Halse, G.E. Eide, J.G. Brun, G.S. Tell, Impact of lean mass and fat mass on bone mineral density: The Hordaland Health Study. Maturitas 59, 191–200 (2008)

    Article  PubMed  Google Scholar 

  24. S. Lim, H. Joung, C.S. Shin, H.K. Lee, K.S. Kim et al., Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35, 792–798 (2004)

    Article  PubMed  Google Scholar 

  25. J.F. Aloia, A. Vaswani, R. Ma, E. Flaster, To what extent is bone mass determined by fat-free or fat mass? Am. J. Clin. Nutr. 61, 1110–1114 (1995)

    CAS  PubMed  Google Scholar 

  26. S. Khosla, E.J. Atkinson, B.L. Riggs, L.J. Melton III, Relationship between body composition and bone mass in women. J. Bone Miner. Res. 11, 857–863 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. S. Gillette-Guyonnet, F. Nourhashemi, S. Lauque, H. Grandjean, B. Vellas, Body composition and osteoporosis in elderly women. Gerontology 46, 189–193 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. H.S. Choi, H.J. Oh, H. Choi, W.H. Choi, J.G. Kim et al., Vitamin D insufficiency in Korea—a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J. Clin. Endocrinol. Metab. 96, 643–651 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Kim, B.K. Lee, Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: analysis of 2008–2010 Korean National Health and Nutrition Examination Survey data. Environ. Res. 118, 124–129 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. Korea Centers for Disease Control and Prevention 2012 Korea National Health and Nutrition Examination Survey. http://Knhanes.cdc.go.kr/. Accessed 25 Mar 2013

  31. S.B. Heymsfield, R. Smith, M. Aulet, B. Bensen, S. Lichtman et al., Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am. J. Clin. Nutr. 52, 214–218 (1990)

    CAS  PubMed  Google Scholar 

  32. S. Lim, J.H. Kim, J.W. Yoon, S.M. Kang, S.H. Choi et al., Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 33, 1652–1654 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. M. Muscaritoli, S.D. Anker, J. Argiles, Z. Aversa, J.M. Bauer et al., Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 29, 154–159 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. I. Janssen, S.B. Heymsfield, R. Ross, Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 50, 889–896 (2002)

    Article  PubMed  Google Scholar 

  35. K.K. Hedayati, M. Dittmar, Prevalence of sarcopenia among older community-dwelling people with normal health and nutritional state. Ecol. Food Nutr. 49, 110–128 (2010)

    Article  PubMed  Google Scholar 

  36. R.N. Baumgartner, K.M. Koehler, D. Gallagher, L. Romero, S.B. Heymsfield et al., Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 147, 755–763 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. G.A. van Kan, Epidemiology and consequences of sarcopenia. J. Nutr. Health Aging 13, 708–712 (2009)

    Article  Google Scholar 

  38. S. Lee, T.N. Kim, S.H. Kim, Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: a cross-sectional study. Arthritis Rheum. 64, 3947–3954 (2012)

    Article  PubMed  Google Scholar 

  39. T.N. Kim, S.J. Yang, H.J. Yoo, K.I. Lim, H.J. Kang et al., Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int. J. Obes. 33, 885–892 (2009)

    Article  CAS  Google Scholar 

  40. A.B. Newman, V. Kupelian, M. Visser, E. Simonsick, B. Goodpaster et al., Sarcopenia: alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 51, 1602–1609 (2003)

    Article  PubMed  Google Scholar 

  41. L. Van Langendonck, A.L. Claessens, J. Lefevre, M. Thomis, R. Philippaerts et al., Association between bone mineral density (DXA), body structure, and body composition in middle-aged men. Am. J. Hum. Biol. 14, 735–742 (2002)

    Article  PubMed  Google Scholar 

  42. G.V. Halade, A. El Jamali, P.J. Williams, R.J. Fajardo, G. Fernandes, Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp. Gerontol. 46, 43–52 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. P. Szulc, T.J. Beck, F. Marchand, P.D. Delmas, Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men—the MINOS study. J. Bone Miner. Res. 20, 721–729 (2005)

    Article  PubMed  Google Scholar 

  44. Y.E. Taes, B. Lapauw, G. Vanbillemont, V. Bogaert, D. De Bacquer et al., Fat mass is negatively associated with cortical bone size in young healthy male siblings. J. Clin. Endocrinol. Metab. 94, 2325–2331 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. M. Visser, D.P. Kiel, J. Langlois, M.T. Hannan, D.T. Felson et al., Muscle mass and fat mass in relation to bone mineral density in very old men and women: the Framingham Heart Study. Appl. Radiat. Isot. 49, 745–747 (1998)

    Article  CAS  PubMed  Google Scholar 

  46. T. Douchi, T. Oki, S. Nakamura, H. Ijuin, S. Yamamoto et al., The effect of body composition on bone density in pre- and postmenopausal women. Maturitas 27, 55–60 (1997)

    Article  CAS  PubMed  Google Scholar 

  47. M.C. Walsh, G.R. Hunter, M.B. Livingstone, Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos. Int. 17, 61–67 (2006)

    Article  PubMed  Google Scholar 

  48. A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm et al., European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing 39, 412–423 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Daegu and Kyungpook local committee of the Korean Diabetes Association and by the Dongguk University research fund. I thank the Ministry of Health and Social Welfare and Korea Centers for Disease Control and Prevention for providing the invaluable data of the survey.

Conflict of interest

The authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Su Moon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, SS. Relationship of lean body mass with bone mass and bone mineral density in the general Korean population. Endocrine 47, 234–243 (2014). https://doi.org/10.1007/s12020-013-0160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0160-3

Keywords

Navigation