Skip to main content

Creatine supplementation and aging musculoskeletal health

Abstract

Sarcopenia refers to the progressive loss of muscle mass and muscle function and is a contributing factor for cachexia, bone loss, and frailty. Resistance training produces several physiological adaptations which improve aging musculoskeletal health, such as increased muscle and bone mass and strength. The combination of creatine supplementation and resistance training may further lead to greater physiological benefits. We performed meta-analyses which indicate creatine supplementation combined with resistance training has a positive effect on aging muscle mass and upper body strength compared to resistance training alone. Creatine also shows promise for improving bone mineral density and indices of bone biology. The combination of creatine supplementation and resistance training could be an effective intervention to improve aging musculoskeletal health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinková, M. Vandewoude, M. Zamboni, European Working Group on Sarcopenia in Older People.: sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412–423 (2010)

    PubMed Central  PubMed  Article  Google Scholar 

  2. R.A. Fielding, B. Vellas, W.J. Evans, S. Bhasin, J.E. Morley, A.B. Newman, G. Abellan van Kan, S. Andrieu, J. Bauer, D. Breuille, T. Cederholm, J. Chandler, C. De Meynard, L. Donini, T. Harris, A. Kannt, F. Keime Guibert, G. Onder, D. Papanicolaou, Y. Rolland, D. Rooks, C. Sieber, E. Souhami, S. Verlaan, M. Zamboni, Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256 (2011)

    PubMed  Article  Google Scholar 

  3. W.J. Evans, J.E. Morley, J. Argilés, C. Bales, V. Baracos, D. Guttridge, A. Jatoi, K. Kalantar-Zadeh, H. Lochs, G. Mantovani, D. Marks, W.E. Mitch, M. Muscaritoli, A. Najand, P. Ponikowski, F. Rossi Fanelli, M. Schambelan, A. Schols, M. Schuster, D. Thomas, R. Wolfe, S.D. Anker, Cachexia: a new definition. Clin Nutr. 27, 793–799 (2008)

    CAS  PubMed  Article  Google Scholar 

  4. G. Crepaldi, S. Maggi, Sarcopenia and osteoporosis: a hazardous duet. J. Endocrinol. Invest. 28, 66–68 (2005)

    CAS  PubMed  Google Scholar 

  5. A. Clegg, J. Young, S. Iliffe, M.O. Rikkert, K. Rockwood, Frailty in elderly people. Lancet 2, 752–762 (2013)

    Article  Google Scholar 

  6. I. Janssen, D.S. Shepard, P.T. Katzmarzyk, R. Roubenhoff, The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52, 80–85 (2004)

    PubMed  Article  Google Scholar 

  7. Kohara, K.: Sarcopenia obesity in aging population: current status and future directions for research. Endocrine. Epub ahead of print (2013)

  8. S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine 42, 29–38 (2012)

    CAS  PubMed  Article  Google Scholar 

  9. J.P. Gumucio, C.L. Mendias, Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43, 12–21 (2013)

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. R. Nilwik, T. Snijders, M. Leenders, B.B. Groen, J. van Kranenburg, L.B. Verdijk, L.J. van Loon, The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 48, 492–498 (2013)

    PubMed  Article  Google Scholar 

  11. L.J. Greenlund, K.S. Nair, Sarcopenia—consequences, mechanisms, and potential therapies. Mech. Ageing Dev. 124, 287–299 (2003)

    CAS  PubMed  Article  Google Scholar 

  12. E. Ziv, D. Hu, Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev. 10, 201–204 (2011)

    CAS  PubMed  Article  Google Scholar 

  13. A.S. Brack, T.A. Rando, Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 3, 226–237 (2007)

    CAS  PubMed  Article  Google Scholar 

  14. A.M. Abbatecola, G. Paolisso, P. Fattoretti, W.J. Evans, V. Fiore, L. Dicioccio, F. Lattanzio, Discovering pathways of sarcopenia in older adults: a role for insulin resistance on mitochondria dysfunction. J. Nutr. Health Aging 15, 890–895 (2011)

    CAS  PubMed  Article  Google Scholar 

  15. E. Marzetti, R. Calvani, R. Bernabei, C. Leeuwenburgh, Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty—a mini-review. Gerontology 58, 99–106 (2012)

    CAS  PubMed  Article  Google Scholar 

  16. M.A. Tarnopolsky, A. Safdar, The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Appl. Physiol. Nutr. Metab. 33, 213–227 (2008)

    CAS  PubMed  Article  Google Scholar 

  17. W.F. Nieuwenhuizen, H. Weenen, P. Rigby, M.M. Hetherington, Older adults and patients in need of nutritional support: review of current treatment options and factors influencing nutritional intake. Clin. Nutr. 29, 160–169 (2010)

    PubMed  Article  Google Scholar 

  18. M. Wyss, R. Kaddurah-Daouk, Creatine and creatinine metabolism. Physiol. Rev. 80, 1107–1213 (2000)

    CAS  PubMed  Google Scholar 

  19. R.G. Larsen, D.M. Callahan, S.A. Foulis, J.A. Kent-Braun, Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior. Appl. Physiol. Nutr. Metab. 37, 88–99 (2012)

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. K.K. McCully, R.A. Fielding, W.J. Evans, J.S. Leigh Jr, J.D. Posner, Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J. Appl. Physiol. 75, 813–819 (1993)

    CAS  PubMed  Google Scholar 

  21. P. Möller, J. Bergström, P. Fürst, K. Hellström, Effect of aging on energy-rich phosphagens in human skeletal muscles. Clin. Sci. (Lond) 58, 553–555 (1980)

    Google Scholar 

  22. S.A. Smith, S.J. Montain, R.P. Matott, G.P. Zientara, F.A. Jolesz, R.A. Fielding, Creatine supplementation and age influence muscle metabolism during exercise. J. Appl. Physiol. 85, 1349–1356 (1998)

    CAS  PubMed  Google Scholar 

  23. M.J. Chrusch, P.D. Chilibeck, K.E. Chad, K.S. Davison, D.G. Burke, Creatine supplementation combined with resistance training in older men. Med. Sci. Sports Exerc. 33, 2111–2117 (2001)

    CAS  PubMed  Article  Google Scholar 

  24. A. Brose, G. Parise, M.A. Tarnopolsky, Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 58, 11–19 (2003)

    PubMed  Article  Google Scholar 

  25. M. Tarnopolsky, A. Zimmer, J. Paikin, A. Safdar, A. Aboud, E. Pearce, B. Roy, T. Doherty, Creatine monohydrate and conjugated linoleic acid improves strength and body composition following resistance exercise in older adults. PLoS ONE 2, 991 (2007)

    Article  Google Scholar 

  26. D.G. Candow, J.P. Little, P.D. Chilibeck, S. Abeysekara, G.A. Zello, S. Kazachkov, S.M. Cornish, P.H. Yu, Low-dose creatine combined with protein during resistance training in older men. Med. Sci. Sports Exerc. 40, 1645–1652 (2008)

    CAS  PubMed  Article  Google Scholar 

  27. A.F. Aguiar, R.S. Januario, R.P. Junior, A.M. Gerage, F.L. Pina, M.A. do Nascimento, C.R. Padovani, E.S. Cyrino, Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur. J. Appl. Physiol. 113, 987–996 (2013)

    CAS  PubMed  Article  Google Scholar 

  28. G. Parise, S. Mihic, D. MacLennan, K.E. Yarasheski, M.A. Tarnopolsky, Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J. Appl. Physiol. 91, 1041–1047 (2001)

    CAS  PubMed  Google Scholar 

  29. R. Deminice, A.A. Jardao, Creatine supplementation reduces oxidative stress biomarkers after acute exercise in rats. Amino Acids 43, 709–715 (2011)

    PubMed  Article  Google Scholar 

  30. P. Sestili, C. Martinelli, E. Colombo, E. Barbieri, L. Potenza, S. Sartini, C. Fimognari, Creatine as an antioxidant. Amino Acids 40, 1385–1396 (2011)

    CAS  PubMed  Article  Google Scholar 

  31. A.P. Johnston, M. De Lisio, G. Parise, Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl. Physiol. Nutr. Metab. 33, 191–199 (2008)

    CAS  PubMed  Article  Google Scholar 

  32. M.G. Bemben, M.S. Witten, J.M. Carter, K.A. Eliot, A.W. Knehans, D.A. Bemben, The effects of supplementation with creatine and protein on muscle strength following a traditional resistance training program in middle-aged and older men. J. Nutr. Health Aging 14, 155–159 (2010)

    CAS  PubMed  Article  Google Scholar 

  33. S. Bermon, P. Venembre, C. Sachet, S. Valour, C. Dolisi, Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiol. Scand. 164, 147–155 (1998)

    CAS  PubMed  Article  Google Scholar 

  34. B.O. Eijnde, M. Van Leemputte, M. Goris, V. Labarque, Y. Taes, P. Verbessem, L. Vanhees, M. Ramaekers, B. Vanden Eynde, R. Van Schuylenbergh, R. Dom, E.A. Richter, P. Hespel, Effects of creatine supplementation and exercise training on fitness in men 55–75-year-old. J. Appl. Physiol. 95, 818–828 (2003)

    CAS  PubMed  Google Scholar 

  35. K.A. Eliot, A.W. Knehans, D.A. Bemben, M.S. Witten, J. Carter, M.G. Bemben, The effects of creatine and whey protein supplementation on body composition in men aged 48 to 72 years during resistance training. J. Nutr. Health Aging 12, 208–212 (2008)

    CAS  PubMed  Article  Google Scholar 

  36. D.G. Candow, P.D. Chilibeck, Review: timing of creatine and protein supplementation during resistance training in the elderly. Appl. Physiol. Nutr. Metab. 33, 184–190 (2008)

    CAS  PubMed  Article  Google Scholar 

  37. M. Neves Jr, B. Guolano, H. Roschel, R. Fuller, F.B. Benatii, A.L. Pinto, F.R. Lima, R.M. Pereira, A.H. Lancha Jr, E. Bonfa, Beneficial effect of creatine supplementation in knee osteoarthritis. Med. Sci. Sports Exerc. 43, 1538–1543 (2011)

    CAS  PubMed  Article  Google Scholar 

  38. C.J. Hass, M.A. Collins, J.L. Juncos, Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: a randomized trial. Neurorehabil. Neural Repair 21, 107–115 (2007)

    PubMed  Article  Google Scholar 

  39. S.J. Deacon, E.E. Vincent, P.L. Greenhaff, J. Fox, M.C. Steiner, S.J. Singh, M.D. Morgan, Randomized controlled trial of dietary creatine as an adjunct therapy to physical training in chronic obstructive pulmonary disease. Am. J. Respir. Care Med. 178, 233–239 (2008)

    CAS  Article  Google Scholar 

  40. V.A. Cornelissen, J.G.M. Defoor, A. Stevens, D. Schepers, P. Hespel, M. Decramer, L. Mortelmans, F. Dobbels, J. Vanhaecke, R.H. Fagard, L. Vanhees, Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: a randomized controlled trial. Clin. Rehabil. 24, 988–999 (2010)

    CAS  PubMed  Article  Google Scholar 

  41. D.G. Candow, P.D. Chilibeck, Potential of creatine supplementation for improving aging bone health. J. Nutr. Health Aging 14, 149–153 (2010)

    CAS  PubMed  Article  Google Scholar 

  42. M. Louis, J.R. Poortmans, M. Francaux, J. Berre, N. Boisseau, E. Brassine, D.J. Cuthbertson, K. Smith, J.A. Babraj, T. Waddell, M.J. Rennie, No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. Am. J. Physiol. Endocrinol. Metab. 285, 1089–1094 (2003)

    Google Scholar 

  43. M.A. Tarnopolsky, D.J. Mahoney, J. Vajsar, C. Rodriguez, T.J. Doherty, B.D. Roy, D. Biggar, Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 62, 1771–1777 (2004)

    CAS  PubMed  Article  Google Scholar 

  44. P.D. Chilibeck, M.J. Chrusch, K.E. Chad, S.K. Davison, D.G. Burke, Creatine monohydrate and resistance training increase bone mineral content and density in older men. J. Nutr. Health Aging 9, 352–353 (2005)

    CAS  PubMed  Google Scholar 

  45. T.J. Beck, L.A. Kohlmeier, M.A. Petit, G. Wu, M.S. Leboff, J.A. Cauley, S. Nicholas, Z. Chen, Confounders in the association between exercise and femur bone in postmenopausal women. Med. Sci. Sports Exerc. 43, 80–89 (2011)

    PubMed  Article  Google Scholar 

  46. P.D. Chilibeck, J. Rooke, L. Paus-Jenssen, D. Candow, The effect of creatine monohydrate supplementation combined with resistance training on bone mineral density in older men and women. Appl. Physiol. Nutr. Metab. 37(S1), S6 (2012)

    Google Scholar 

  47. A. Antolic, B.D. Roy, M.A. Tarnopolsky, R.F. Zernicke, G.R. Wohl, S.G. Shaughnessy, J.M. Bourgeois, Creatine monohyderate increases bone mineral density in young Sprague–Dawley rats. Med. Sci. Sports Exerc. 39, 816–820 (2007)

    CAS  PubMed  Article  Google Scholar 

  48. R.A. de Souza, M. Xavier, F.F. da Silva, M.T. de Souza, M.G. Tosato, A.A. Martin, J.C. Castilho, W. Ribeiro, L. Silveira Jr, Influence of creatine supplementation on bone quality in the ovariectomized rat model: an FT-Raman spectroscopy study. Lasers Med. Sci. 27, 487–495 (2012)

    PubMed  Article  Google Scholar 

  49. I. Gerber, I. ap Gwynn, M. Alini, T. Wallimann, Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur. Cell Mater. 10, 8–22 (2005)

    CAS  PubMed  Google Scholar 

  50. D.G. Burke, P.D. Chilibeck, G. Parise, D.G. Candow, D. Mahoney, M. Tarnopolsky, Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc. 35, 1946–1955 (2003)

    CAS  PubMed  Article  Google Scholar 

  51. H. Yasuda, N. Shima, N. Nakagawa, S.I. Mochizuki, K. Yano, N. Fujise, Y. Sato, M. Goto, K. Yamaguchi, M. Kuriyama, T. Kanno, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139, 1329–1337 (1998)

    PubMed  Google Scholar 

  52. S.M. Cornish, D.G. Candow, N.T. Jantz, P.D. Chilibeck, J.P. Little, S. Forbes, S. Abeysekara, G.A. Zello, Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr Exerc. Metab. 19, 79–96 (2009)

    CAS  PubMed  Google Scholar 

  53. T.W. Buford, R.B. Kreider, J.R. Stout, M. Greenwood, B. Campbell, M. Spano, T. Ziegenfuss, H. Lopez, J. Landis, J. Antonio, International society of sport nutrition position stand: creatine supplementation and exercise. J. Int. Soc. Sports Nutr. 4, 6 (2007)

    PubMed Central  PubMed  Article  Google Scholar 

  54. H.J. Kim, C.K. Kim, A. Carpentier, J.R. Poortmans, Studies on the safety of creatine supplementation. Amino Acids 40, 1409–1418 (2011)

    CAS  PubMed  Article  Google Scholar 

  55. R. Jager, M. Purpura, A. Shao, T. Inoue, R.B. Kreider, Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids 40, 1369–1383 (2011)

    PubMed Central  PubMed  Article  Google Scholar 

  56. Dietitians of Canada, American College of Sports Medicine, N.R. Rodriguez, N.M. Di Marco, S. Langley, American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sports Exerc. 41, 709–731 (2009)

    PubMed  Article  Google Scholar 

  57. T. Wallimann, M. Tokarska-Schlattner, U. Schlattner, The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40, 1271–1296 (2011)

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. J.R. Poortmans, A. Kumps, P. Duez, A. Fofonka, A. Carpentier, M. Francaux, Effect of oral creatine supplementation on urinary methylamine, formaldehyde, and formate. Med. Sci. Sports Exerc. 37, 1717–1720 (2005)

    CAS  PubMed  Article  Google Scholar 

  59. D.G. Burke, S. Silver, L.E. Holt, T. Smith Palmer, C.J. Culligan, P.D. Chilibeck, The effect of continuous low dose creatine supplementation on force, power, and total work. Int J Sport Nutr Exerc. Metab. 10, 235–244 (2000)

    CAS  PubMed  Google Scholar 

  60. T. Klopstock, M. Elstner, A. Bender, Creatine in mouse models of neurodegeneration and aging. Amino Acids 40, 1297–1303 (2011)

    CAS  PubMed  Article  Google Scholar 

  61. E.S. Rawson, A.C. Venezia, Use of creatine in the elderly and evidence for effects on cognition function in young and old. Amino Acids 40, 1349–1362 (2011)

    CAS  PubMed  Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren G. Candow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Candow, D.G., Chilibeck, P.D. & Forbes, S.C. Creatine supplementation and aging musculoskeletal health. Endocrine 45, 354–361 (2014). https://doi.org/10.1007/s12020-013-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0070-4

Keywords

  • Sarcopenia
  • Resistance training
  • Bone health
  • Meta-analysis