Skip to main content
Log in

Points of integration between the intracellular energy sensor AMP-activated protein kinase (AMPK) activity and the somatotroph axis function

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK), an enzyme functioning as a cellular sensor of low energy, stores and promotes adaptive changes in growth, differentiation, and metabolism. While AMPK is primarily thought of as a regulator of systemic metabolism, it has been clearly established that it also has a role in the regulation of cell growth and may be a therapeutic target for proliferative disorders. Growth hormone (GH) secretion from the anterior pituitary and GH-induced synthesis and release of insulin-like-growth-factor-1 (IGF-1) from the liver determine linear growth before puberty. Actually, GH and IGF-1 are potent growth factors affecting cell growth and differentiation in different tissues, and still have anabolic functions and serve as essential regulators of fuel metabolism in adulthood, as well. A variety of peripheral hormonal and metabolic signals regulate GH secretion either by acting directly on the anterior pituitary and/or modulating GH-releasing hormone or somatostatin release from the hypothalamus. Actually, intracellular transduction of endocrine and metabolic signals regulating somatotroph function is still debated. Based on the previously summarized contents, the aim of the present work has been to review currently available data suggesting a role of AMPK in the interplay between GH axis activity and metabolic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.G. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. S.A. Hawley, J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd, T.P. Mäkelä, D.R. Alessi, D.G. Hardie, Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003)

    Article  PubMed  Google Scholar 

  3. A. Woods, S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, D. Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. M.C. Towler, G.D. Hardie, AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. S.P. Davies, N.R. Helps, P.T. Cohen, D.G. Hardie, 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C{alpha} and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421–425 (1995)

    Article  PubMed  CAS  Google Scholar 

  6. C.T. Lim, B. Kola, M. Korbonits, AMPK as a mediator of hormonal signalling. J. Mol. Endocrinol. 44, 87–97 (2009)

    Article  PubMed  Google Scholar 

  7. S. Sangiao-Alvarellos, L. Varela, M.J. Vazquez, K. Da Boit, S.A. Saha, F. Cordido, C. Dieguez, M. Lopez, Influence of ghrelin and growth hormone deficiency on AMP-activated protein kinase and hypothalamic lipid metabolism. J. Neuroendocrinol. 22, 543–556 (2010)

    Article  PubMed  CAS  Google Scholar 

  8. R.L. Hurley, K.A. Anderson, J.M. Franzone, B.E. Kemp, A.R. Means, L.A. Witters, The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005)

    Article  PubMed  CAS  Google Scholar 

  9. M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J. Webster, Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in L(beta)T2 gonadotropes. Mol. Endocrinol. 22, 760–771 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. Z. Luo, Y. Zhang, F. Li, J. He, H. Ding, L. Yan, H. Cheng, Resistin induces insulin resistance in both AMPK dependent and AMPK independent mechanisms in HepG2 cells. Endocrine 36, 60–69 (2009)

    Article  PubMed  CAS  Google Scholar 

  11. X. Xiao, Y. Dong, J. Zhong, R. Cao, X. Zhao, G. Wen, J. Liu, Adiponectin protects endothelial cells from the damages induced by the intermittent high levels of glucose. Endocrine 40, 386–393 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. X.B. Cheng, J.P. Wen, Y. Yang, J. Yang, G. Ning, X.Y. Li, GnRH secretion is inhibited by adiponectin through activation of AMPK-activated protein kinase and extracellular signal-regulated kinase. Endocrine 39, 6–12 (2011)

    Article  PubMed  CAS  Google Scholar 

  13. M. Xie, D. Zhang, J.R. Dyck, Y. Li, H. Zhang, M. Morishima, D.L. Mann, G.E. Taffet, A. Baldini, D.S. Khoury, M.D. Schneider, A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. USA 103, 17378–17383 (2006)

    Article  PubMed  CAS  Google Scholar 

  14. A. Suzuki, G. Kusakai, A. Kishimoto, Y. Shimojo, T. Ogura, M.F. Lavin, H. Esumi, IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner. Biochem. Biophys. Res. Commun. 324, 986–992 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. E. Tomas, T.S. Tsao, A.K. Saha, H.E. Murrey, C. Zhang Cc, S.I. Itani, H.F. Lodish, N.B. Ruderman, Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 99, 16309–16313 (2002)

    Article  PubMed  CAS  Google Scholar 

  16. W.W. Winder, D.G. Hardie, Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299–E304 (1996)

    PubMed  CAS  Google Scholar 

  17. M.E. Young, G.K. Radda, B. Leighton, Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR—an activator of AMP-activated protein kinase. FEBS Lett. 382, 43–47 (1996)

    Article  PubMed  CAS  Google Scholar 

  18. G.R. Steinberg, S.B. Jorgensen, The AMP-activated protein kinase: role in regulation of skeletal muscle metabolism and insulin sensitivity. Mini-Rev. Med. Chem. 7, 521–528 (2007)

    Article  Google Scholar 

  19. V. Locatelli, A. Torsello, Pyruvate and satiety: can we fool the brain? Endocrinology 146, 1–2 (2005)

    Article  PubMed  CAS  Google Scholar 

  20. M.F. McCarty, Chronic activation of AMP-activated kinase as a strategy for slowing aging. Med. Hypotheses 63, 334–339 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. M.M. Mihaylova, R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. M. Josie, M. Evans, Metformin and reduced risk of cancer in diabetic patients. Br. Med. J. 330, 1304–1305 (2005)

    Article  Google Scholar 

  23. H. Motoshima, B.J. Goldstein, M. Igata, E. Araki, AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol. 574, 63–71 (2006)

    Article  PubMed  CAS  Google Scholar 

  24. M. Zakikhani, R. Dowling, I.G. Fantus, N. Sonenberg, M. Pollak, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006)

    Article  PubMed  CAS  Google Scholar 

  25. T.K. Sengupta, G.M. Leclerc, T.T. Hsieh-Kinser, G.J. Leclerc, I. Singh, J.C. Barredo, Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy. Mol. Cancer 6, 46–58 (2007)

    Article  PubMed  Google Scholar 

  26. M. Buzzai, R.G. Jones, R.K. Amaravadi, J.J. Lum, R.J. DeBerardinis, F. Zhao, B. Villet, C.B. Thompson, Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. H.U. Park, S. Suy, M. Danner, V. Dailey, Y. Zhang, H. Li, D.R. Hyduke, B.T. Collins, G. Gagnon, B. Kallakury, D. Kumar, M.L. Brown, A. Fornace, A. Dritschilo, S.P. Collins, AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol. Cancer Ther. 8, 733–741 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. J.M. Corton, J.G. Gillespie, S.A. Hawley, D.G. Hardie, 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565 (1995)

    Article  PubMed  CAS  Google Scholar 

  29. R. Rattan, S. Giri, A.K. Singh, I. Singh, 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582–39593 (2005)

    Article  PubMed  CAS  Google Scholar 

  30. Y. Gao, Y. Zhou, A. Xu, D. Wu, Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells. Biol. Pharm. Bull. 31, 1716–1722 (2008)

    Article  PubMed  CAS  Google Scholar 

  31. I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, T. Sugimoto, Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3E1 cells through endothelial NOS and BMP-2 expression. Am. J. Physiol. Endocrinol. Metab. 296, 139–146 (2009)

    Article  Google Scholar 

  32. G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMPK-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001)

    PubMed  CAS  Google Scholar 

  33. E.E. Müller, V. Locatelli, D. Cocchi, Neuroendocrine control of growth hormone secretion. Physiol. Rev. 79, 511–607 (1999)

    PubMed  Google Scholar 

  34. W.B. Wehrenberg, P.J. Bergman, L. Stagg, J. Ndon, A. Giustina, Glucocorticoid inhibition of growth in rats: partial reversal with somatostatin antibodies. Endocrinology 127, 2705–2708 (1990)

    Article  PubMed  CAS  Google Scholar 

  35. G. Tulipano, J.E. Taylor, H.A. Halem, R. Datta, J.Z. Dong, M.D. Culler, I. Bianchi, D. Cocchi, A. Giustina, Glucocorticoid inhibition of growth in rats: partial reversal with the full-length ghrelin analog BIM-28125. Pituitary 10, 267–274 (2007)

    Article  PubMed  CAS  Google Scholar 

  36. A. Giustina, J.D. Veldhuis, Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998)

    Article  PubMed  CAS  Google Scholar 

  37. A. Giustina, W.B. Wehrenberg, Influence of thyroid hormones on the regulation of growth hormone secretion. Eur. J. Endocrinol. 133, 646–653 (1995)

    Article  PubMed  CAS  Google Scholar 

  38. M. Christ-Crain, B. Kola, F. Lolli, C. Fekete, D. Seboek, G. Wittmann, D. Feltrin, S.C. Igreja, S. Ajodha, J. Harvey-White, G. Kunos, B. Müller, F. Pralong, G. Aubert, G. Arnaldi, G. Giacchetti, M. Boscaro, A.B. Grossman, M. Korbonits, AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome. FASEB J. 22, 1673–1683 (2008)

    Article  Google Scholar 

  39. M. Lopez, R. Lage, A.K. Saha, D. Perez-Tilve, M.J. Vazquez, L. Varela, S. Sangiao-Alvarellos, S. Tovar, K. Raghay, S. Rodriguez-Cuenca, R.M. Deoliveira, T. Castaneda, R. Datta, J.Z. Dong, M. Culler, M.W. Sleeman, C.V. Alvarez, R. Gallego, C.J. Lelliot, D. Carling, M.H. Tschop, C. Dieguez, A. Vidal-Puig, Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008)

    Article  PubMed  CAS  Google Scholar 

  40. Z.B. Andrews, Z.W. Liu, N. Wallingford, D.M. Erion, E. Borok, J.M. Friedman, M.H. Tschop, M. Shanabrough, G. Cline, G.I. Shulman, A. Coppola, X.B. Gao, T.L. Horvath, S. Diano, UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008)

    Article  PubMed  CAS  Google Scholar 

  41. M. Pollak, Insulin and Insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008)

    Article  PubMed  CAS  Google Scholar 

  42. I. Chopra, H.F. Li, H. Wang, K.A. Webster, Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. doi:10.1007/s00125-011-2407-y (2012)

  43. A.A. Hayashi, C.G. Proud, The rapid inactivation of protein synthesis by growth hormone requires signaling through mTOR. Am. J. Physiol. Endocrinol. Metab. 292, E1647–E1655 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. C. Beauloye, A.S. Marsin, L. Bertrand, U. Krause, D.G. Hardie, J.L. Vanoverschelde, L. Hue, Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett. 505, 348–352 (2001)

    Article  PubMed  CAS  Google Scholar 

  45. S. Kovacic, C.L. Soltys, A.J. Barr, I. Shiojima, K. Walsh, J.R. Dyck, Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J. Biol. Chem. 278, 39422–39427 (2003)

    Article  PubMed  CAS  Google Scholar 

  46. K. To, H. Yamaza, T. Komatsu, T. Hayashida, H. Hayashi, H. Toyama, T. Chiba, Y. Higami, I. Shimokawa, Down-regulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp. Gerontol. 42, 1063–1071 (2007)

    Article  PubMed  CAS  Google Scholar 

  47. K.A. Al-Regaiey, M.M. Masternak, M. Bonkowski, L. Sun, A. Bartke, Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor 1/insulin signaling and caloric restriction. Endocrinology 2005(146), 851–860 (2005)

    Google Scholar 

  48. Z. Wang, M.M. Masternak, K.A. Al-Regaiey, A. Bartke, Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology 148, 2845–2853 (2007)

    Article  PubMed  CAS  Google Scholar 

  49. B. Olsson, Y.M. Bohlooly, S.M. Fitzgerald, F. Frick, A. Ljungberg, B. Ahren, J. Tornell, G. Bergstrom, J. Oscarsson, Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology 146, 920–930 (2005)

    Article  PubMed  CAS  Google Scholar 

  50. S. Sangiao-Alvarellos, M.J. Vazquez, L. Varela, R. Nogueiras, A.K. Saha, F. Cordido, M. Lopez, C. Dieguez, Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion. Endocrinology 150, 4562–4574 (2009)

    Article  PubMed  CAS  Google Scholar 

  51. G. Tulipano, M. Giovannini, M. Spinello, V. Sibilia, A. Giustina, D. Cocchi, AMP-activated protein kinase regulates normal rat somatotroph cell function and growth of rat pituitary adenomatous cells. Pituitary 14, 242–252 (2011)

    Article  PubMed  CAS  Google Scholar 

  52. G. Tulipano, D. Soldi, M. Bagnasco, M.D. Culler, J.E. Taylor, D. Cocchi, A. Giustina, Characterization of new selective somatostatin receptor subtype-2 (sst2) antagonists, BIM-23627 and BIM-23454. Effects of BIM-23627 on GH release in anesthetized male rats after short-term high-dose dexamethasone treatment. Endocrinology 143, 1218–1224 (2002)

    Article  PubMed  CAS  Google Scholar 

  53. M.S. Lewitt, Stimulation of IGF-binding protein-1 secretion by AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 282, 1126–1131 (2001)

    Article  PubMed  CAS  Google Scholar 

  54. S. Melmed, A. Colao, A. Barkan, M. Molitch, A.B. Grossman, D. Kleinberg, D. Clemmons, P. Chanson, E. Laws, J. Schlechte, M.L. Vance, K. Ho, A. Giustina, Guidelines for acromegaly management: an update. J. Clin. Endocrinol. Metab. 94, 1509–1517 (2009)

    Article  PubMed  CAS  Google Scholar 

  55. A. Giustina, P. Chanson, M.D. Bronstein, A. Klibanski, S.W. Lamberts, P.P. Casanueva, P. Trainer, E. Ghigo, K. Ho, S. Melmed, A consensus on criteria for cure of acromegaly. J. Clin. Endocrinol. Metab. 95, 3141–3148 (2010)

    Article  PubMed  CAS  Google Scholar 

  56. S. Melmed, Acromegaly pathogenesis and treatment. J. Clin. Invest. 119, 3189–3202 (2009)

    Article  PubMed  CAS  Google Scholar 

  57. A. Gorshtein, H. Rubinfeld, E. Kendler, M. Theodoropoulou, V. Cerovac, G.K. Stalla, Z.R. Cohen, M. Hadani, I. Shimon, Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 16, 1017–1027 (2009)

    Article  PubMed  CAS  Google Scholar 

  58. G. Tulipano, L. Faggi, M. Losa, P. Mortini, M. Spinello, D. Cocchi, A. Giustina, Effects of the combined treatment with AMPK activator and somatostatin-14 on hormone secretion and cell proliferation in cultured GH-secreting pituitary tumor cells, in International Congress of Endocrinology/European congress of Endocrinology 2012, Florence, May 5–9 (2012)

  59. O. Ali, S. Banerjee, D.F. Kelly, P.D.K. Lee, Management of type 2 diabetes mellitus associated with pituitary gigantism. Pituitary 10, 359–364 (2007)

    Article  PubMed  CAS  Google Scholar 

  60. L. Fontana, The scientific basis of caloric restriction leading to longer life. Curr. Opin. Gastroenterol. 25, 144–150 (2009)

    Article  PubMed  CAS  Google Scholar 

  61. A. Bartke, Pleiotropic effects of growth hormone signaling in aging. Trends. Endocrinol. Metab. 22, 437–442 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Tulipano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tulipano, G., Faggi, L., Sibilia, V. et al. Points of integration between the intracellular energy sensor AMP-activated protein kinase (AMPK) activity and the somatotroph axis function. Endocrine 42, 292–298 (2012). https://doi.org/10.1007/s12020-012-9732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9732-x

Keywords

Navigation