Skip to main content

Advertisement

Log in

Evidence of a stabilizing mutation of β-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

An Erratum to this article was published on 28 July 2012

Abstract

Aberrant accumulation of β-catenin plays an important role in a variety of human neoplasms. This can be caused by stabilizing mutation of β-catenin (CTNNB1, exon 3) or by mutation or deregulated expression of other components of the WNT/β-catenin signaling pathway. Accumulation of non-phosphorylated active β-catenin has been reported to commonly occur in parathyroid adenomas from patients with primary hyperparathyroidism (pHPT), either due to the aberrantly spliced internally truncated WNT receptor LRP5 (LRP5Δ) or to a stabilizing mutation of β-catenin. The S37A mutation was reported to occur in 7.3 % in a single study of parathyroid adenomas, while in other studies no stabilizing mutations of β-catenin exon 3 were identified. The aim of this study was to determine the mutational frequency of the CTNNB1 gene, specifically exon 3 in a large series of parathyroid adenomas. One hundred and eighty sporadic parathyroid adenomas were examined for mutations in exon 3 of CTNNB1 by direct DNA sequencing, utilizing previously published primer sequences. The mutation S33C (TCT>TGT) was detected by direct-DNA sequencing of PCR fragments in 1 out of 180 sporadic parathyroid adenomas (0.68 %). Like serine 37, mutations of serine 33 have been reported in many neoplasms with resulting β-catenin stabilization, enhanced transcription, and oncogenic activities. Immunohistochemical analysis revealed an overexpression of the β-catenin protein in the lone mutant tumor. Taking also previous studies into account we conclude that activating mutations of the regulatory GSK-3β phosphorylation sites serine 33 and 37, encoded by CTNNB1 exon 3, rarely occur in parathyroid adenomas from patients with pHPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H. Heath 3rd, S.F. Hodgson, M.A. Kennedy, Primary hyperparathyroidism. Incidence, morbidity, and potential economic impact in a community. N. Engl. J. Med. 302, 189–193 (1980)

    Article  PubMed  Google Scholar 

  2. E. Lundgren, E. Szabo, S. Ljunghall, R. Bergstrom, L. Holmberg, J. Rastad, Population based case-control study of sick leave in postmenopausal women before diagnosis of hyperparathyroidism. BMJ 317, 848–851 (1998)

    Article  PubMed  CAS  Google Scholar 

  3. S.J. Silverberg, E.M. Lewiecki, L. Mosekilde, M. Peacock, M.R. Rubin, Presentation of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J. Clin. Endocrinol. Metab. 94, 351–365 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. C.A. Verdonk, A.J. Edis, Parathyroid “double adenomas”: fact of fiction? Surgery 90, 523–526 (1981)

    PubMed  CAS  Google Scholar 

  5. P.K. Lee, S.L. Jarosek, B.A. Virnig, M. Evasovich, T.M. Tuttle, Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer 109, 1736–1741 (2007)

    Article  PubMed  Google Scholar 

  6. L.E. Tisell, S. Carlsson, M. Fjalling, G. Hansson, S. Lindberg, L.M. Lundberg, A. Oden, Hyperparathyroidism subsequent to neck irradiation risk factors. Cancer 56, 1529–1533 (1985)

    Article  PubMed  CAS  Google Scholar 

  7. G. Westin, P. Bjorklund, G. Akerstrom, Molecular genetics of parathyroid disease. World J. Surg. 33, 2224–2233 (2009)

    Article  PubMed  Google Scholar 

  8. T. Carling, P. Correa, O. Hessman, J. Hedberg, B. Skogseid, D. Lindberg, J. Rastad, G. Westin, G. Akerstrom, Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 83, 2960–2963 (1998)

    Article  PubMed  CAS  Google Scholar 

  9. F. Farnebo, B.-T. Teh, S. Kytölä, A. Svensson, C. Phelan, K. Sandelin, N.W. Thompson, A. Höög, G. Weber, L.-O. Farnebo, C. Larsson, Alterations of the MEN1 gene in sporadic parathyroid tumors. J. Clin. Endocrinol. Metab. 83, 2627–2630 (1998)

    Article  PubMed  CAS  Google Scholar 

  10. A. Arnold, H.G. Kim, Clonal loss of one chromosome 11 in a parathyroid adenoma. J. Clin. Endocrinol. Metab. 69, 496–499 (1989)

    Article  PubMed  CAS  Google Scholar 

  11. M. Shtutman, J. Zhurinsky, I. Simcha, C. Albanese, M. D’Amico, R. Pestell, A. Ben-Ze’ev, The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96, 5522–5527 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. P. Bjorklund, D. Lindberg, G. Akerstrom, G. Westin, Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol. Cancer 7, 53 (2008)

    Article  PubMed  Google Scholar 

  13. P. Bjorklund, G. Akerstrom, G. Westin, Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J. Clin. Endocrinol. Metab. 92, 338–344 (2007)

    Article  PubMed  Google Scholar 

  14. P. Bjorklund, G. Akerstrom, G. Westin, Activated beta-catenin in the novel human parathyroid tumor cell line sHPT-1. Biochem. Biophys. Res. Commun. 352, 532–536 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. J. Costa-Guda, A. Arnold, Absence of stabilizing mutations of beta-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas. J. Clin. Endocrinol. Metab. 92, 1564–1566 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. S. Ikeda, Y. Ishizaki, Y. Shimizu, M. Fujimori, Y. Ojima, M. Okajima, K. Sugino, T. Asahara, Immunohistochemistry of cyclin D1 and beta-catenin, and mutational analysis of exon 3 of beta-catenin gene in parathyroid adenomas. Int. J. Oncol. 20, 463–466 (2002)

    PubMed  CAS  Google Scholar 

  17. S. Semba, R. Kusumi, T. Moriya, H. Sasano, Nuclear accumulation of B-catenin in human endocrine tumors: association with Ki-67 (MIB-1) proliferative activity. Endocr. Pathol. 11, 243–250 (2000)

    Article  PubMed  CAS  Google Scholar 

  18. P. Bjorklund, G. Akerstrom, G. Westin, An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/beta-catenin signaling. PLoS Med 4, e328 (2007)

    Article  PubMed  Google Scholar 

  19. F. Haglund, A. Andreasson, I.L. Nilsson, A. Hoog, C. Larsson, C.C. Juhlin, Lack of S37A CTNNB1/beta-catenin mutations in a Swedish cohort of 98 parathyroid adenomas. Clin. Endocrinol. (Oxf) 73, 552–553 (2010)

    Google Scholar 

  20. P. Polakis, The oncogenic activation of beta-catenin. Curr. Opin. Genet. Dev. 9, 15–21 (1999)

    Article  PubMed  CAS  Google Scholar 

  21. V. Guarnieri, F. Baorda, C. Battista, M. Bisceglia, T. Balsamo, E. Gruppioni, M. Fiorentino, L.A. Muscarella, M. Coco, R. Barbano, S. Corbetta, A. Spada, D.E. Cole, L. Canaff, G.N. Hendy, M. Carella, A. Scillitani. A rare S33C mutation of CTNNB1 encoding β-catenin in a parathyroid adenoma found in an Italian primary hyperparathyroid cohort. Endocrine (2011) doi:10.1007/s12020-011-9558-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee F. Starker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starker, L.F., Fonseca, A., Åkerström, G. et al. Evidence of a stabilizing mutation of β-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas. Endocrine 42, 612–615 (2012). https://doi.org/10.1007/s12020-012-9690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9690-3

Keyword

Navigation