Skip to main content

Advertisement

Log in

PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways perturbations in non-functioning pituitary adenomas

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Non-functioning pituitary adenomas (NFPAs) comprise a heterogeneous group, which are considered the most common pituitary tumor. As no clinically hormone hypersecretion is apparent, non-functioning pituitary adenomas are often diagnosed only when they are large enough to cause tumor mass effects, such as hypopituitarism, visual field defects or headaches. Efficient medical therapy for NFPAs is currently unavailable and surgical treatment of these tumors is not always satisfactory. Characterization of signaling regulatory events in the context of NFPAs may enable the development of new attractive novel strategies. Although data regarding gene expression profiling of signaling pathways in NFPAs have accumulated, studies aimed at fine-classification of NFPAs-specific signaling regulatory mechanisms and feedback loops are scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Roelfsema, N.R. Biermasz, A.M. Pereira, Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary 15, 71–83 (2011)

    Article  Google Scholar 

  2. A. Colao, C. Di Somma, R. Pivonello, A. Faggiano, G. Lombardi, S. Savastano, Medical therapy for clinically non-functioning pituitary adenomas. Endocr. Relat. Cancer 15(4), 905–915 (2008)

    Article  PubMed  CAS  Google Scholar 

  3. M.A. Tichomirowa, A.F. Daly, A. Beckers, Treatment of pituitary tumors: somatostatin. Endocrine 28(1), 93–100 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. A. Colao, S. Petersenn, J. Newell-Price, J.W. Findling, F. Gu, M. Maldonado, U. Schoenherr, B. Dipl, D. Mills, L.R. Salgado, B.M. Biller, A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 366(10), 914–924 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. M. Boscaro, W.H. Ludlam, B. Atkinson, J.E. Glusman, S. Petersenn, M. Reincke, P. Snyder, A. Tabarin, B.M. Biller, J. Findling, S. Melmed, C.H. Darby, K. Hu, Y. Wang, P.U. Freda, A.B. Grossman, L.A. Frohman, J. Bertherat, Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J. Clin. Endocrinol. Metab. 94(1), 115–122 (2009)

    Article  PubMed  CAS  Google Scholar 

  6. M.S. Elston, A.J. Gill, J.V. Conaglen, A. Clarkson, J.M. Shaw, A.J. Law, R.J. Cook, N.S. Little, R.J. Clifton-Bligh, B.G. Robinson, K.L. McDonald, Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149(3), 1235–1242 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. N.A. Hibberts, D.J. Simpson, J.E. Bicknell, J.C. Broome, P.R. Hoban, R.N. Clayton, W.E. Farrell, Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin. Cancer Res. 5(8), 2133–2139 (1999)

    PubMed  CAS  Google Scholar 

  8. S. Jordan, K. Lidhar, M. Korbonits, D.G. Lowe, A.B. Grossman, Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur. J. Endocrinol. 143(1), R1–R6 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. D.J. Simpson, S.J. Frost, J.E. Bicknell, J.C. Broome, A.M. McNicol, R.N. Clayton, W.E. Farrell, Aberrant expression of G(1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 22(8), 1149–1154 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. H.E. Turner, Z. Nagy, N. Sullivan, M.M. Esiri, J.A. Wass, Expression analysis of cyclins in pituitary adenomas and the normal pituitary gland. Clin. Endocrinol. (Oxf) 53(3), 337–344 (2000)

    Article  CAS  Google Scholar 

  11. V. Chesnokova, S. Zonis, C. Zhou, A. Ben-Shlomo, K. Wawrowsky, Y. Toledano, Y. Tong, K. Kovacs, B. Scheithauer, S. Melmed, Lineage-specific restraint of pituitary gonadotroph cell adenoma growth. PLoS One 6(3), e17924 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. G.M. Pierantoni, P. Finelli, E. Valtorta, D. Giardino, O. Rodeschini, F. Esposito, M. Losa, A. Fusco, L. Larizza, High-mobility group A2 gene expression is frequently induced in non-functioning pituitary adenomas (NFPAs), even in the absence of chromosome 12 polysomy. Endocr. Relat. Cancer 12(4), 867–874 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. C.S. Moreno, C.O. Evans, X. Zhan, M. Okor, D.M. Desiderio, N.M. Oyesiku, Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res. 65(22), 10214–10222 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. X. Zhang, Y. Zhou, K.R. Mehta, D.C. Danila, S. Scolavino, S.R. Johnson, A. Klibanski, A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab. 88(11), 5119–5126 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. J. Zhao, D. Dahle, Y. Zhou, X. Zhang, A. Klibanski, Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J. Clin. Endocrinol. Metab. 90(4), 2179–2186 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. K.J. Dudley, K. Revill, R.N. Clayton, W.E. Farrell, Pituitary tumours: all silent on the epigenetics front. J. Mol. Endocrinol. 42(6), 461–468 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. D.A. Altomare, J.R. Testa, Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50), 7455–7464 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. I. Vivanco, C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2(7), 489–501 (2002)

    Article  PubMed  CAS  Google Scholar 

  19. Y. Lin, X. Jiang, Y. Shen, M. Li, H. Ma, M. Xing, Y. Lu, Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr. Relat. Cancer 16(1), 301–310 (2009)

    Article  PubMed  CAS  Google Scholar 

  20. M. Musat, M. Korbonits, B. Kola, N. Borboli, M.R. Hanson, A.M. Nanzer, J. Grigson, S. Jordan, D.G. Morris, M. Gueorguiev, M. Coculescu, S. Basu, A.B. Grossman, Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr. Relat. Cancer 12(2), 423–433 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. M. Xu, L. Shorts-Cary, A.J. Knox, B. Kleinsmidt-DeMasters, K. Lillehei, M.E. Wierman, Epidermal growth factor receptor pathway substrate 8 is overexpressed in human pituitary tumors: role in proliferation and survival. Endocrinology 150(5), 2064–2071 (2009)

    Article  PubMed  CAS  Google Scholar 

  22. D. Dworakowska, E. Wlodek, C.A. Leontiou, S. Igreja, M. Cakir, M. Teng, N. Prodromou, M.I. Goth, S. Grozinsky-Glasberg, M. Gueorguiev, B. Kola, M. Korbonits, A.B. Grossman, Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr. Relat. Cancer 16(4), 1329–1338 (2009)

    Article  PubMed  CAS  Google Scholar 

  23. U. Pagotto, T. Arzberger, M. Theodoropoulou, Y. Grubler, C. Pantaloni, W. Saeger, M. Losa, L. Journot, G.K. Stalla, D. Spengler, The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res. 60(24), 6794–6799 (2000)

    PubMed  CAS  Google Scholar 

  24. T.W. Noh, H.J. Jeong, M.K. Lee, T.S. Kim, S.H. Kim, E.J. Lee, Predicting recurrence of nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 94(11), 4406–4413 (2009)

    Article  PubMed  CAS  Google Scholar 

  25. M. Theodoropoulou, G.K. Stalla, D. Spengler, ZAC1 target genes and pituitary tumorigenesis. Mol. Cell. Endocrinol. 326(1–2), 60–65 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. Y. Yin, W.H. Shen, PTEN: a new guardian of the genome. Oncogene 27(41), 5443–5453 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. A. Perren, P. Komminoth, P. Saremaslani, C. Matter, S. Feurer, J.A. Lees, P.U. Heitz, C. Eng, Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am. J. Pathol. 157(4), 1097–1103 (2000)

    Article  PubMed  CAS  Google Scholar 

  28. M.L. Tena-Suck, A. Ortiz-Plata, H.A. de la Vega, Phosphatase and tensin homologue and pituitary tumor-transforming gene in pituitary adenomas. Clinical-pathologic and immunohistochemical analysis. Ann. Diagn. Pathol. 12(4), 275–282 (2008)

    Article  PubMed  Google Scholar 

  29. V. Vasko, M. Saji, E. Hardy, M. Kruhlak, A. Larin, V. Savchenko, M. Miyakawa, O. Isozaki, H. Murakami, T. Tsushima, K.D. Burman, C. De Micco, M.D. Ringel, Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J. Med. Genet. 41(3), 161–170 (2004)

    Article  PubMed  CAS  Google Scholar 

  30. A.M. Martelli, I. Faenza, A.M. Billi, L. Manzoli, C. Evangelisti, F. Fala, L. Cocco, Intranuclear 3′-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis? Cell. Signal. 18(8), 1101–1107 (2006)

    Article  PubMed  CAS  Google Scholar 

  31. L.C. Trotman, A. Alimonti, P.P. Scaglioni, J.A. Koutcher, C. Cordon-Cardo, P.P. Pandolfi, Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441(7092), 523–527 (2006)

    Article  PubMed  CAS  Google Scholar 

  32. S.S. Chaidarun, M.C. Eggo, M.C. Sheppard, P.M. Stewart, Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology 135(5), 2012–2021 (1994)

    Article  PubMed  CAS  Google Scholar 

  33. V.K. LeRiche, S.L. Asa, S. Ezzat, Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J. Clin. Endocrinol. Metab. 81(2), 656–662 (1996)

    Article  PubMed  CAS  Google Scholar 

  34. M.L. Jaffrain-Rea, E. Petrangeli, C. Lubrano, G. Minniti, D. Di Stefano, F. Sciarra, L. Frati, G. Tamburrano, G. Cantore, A. Gulino, Epidermal growth factor binding sites in human pituitary macroadenomas. J. Endocrinol. 158(3), 425–433 (1998)

    Article  PubMed  CAS  Google Scholar 

  35. A. Rishi, M.C. Sharma, C. Sarkar, D. Jain, M. Singh, A.K. Mahapatra, V.S. Mehta, T.K. Das, A clinicopathological and immunohistochemical study of clinically non-functioning pituitary adenomas: a single institutional experience. Neurol. India 58(3), 418–423 (2010)

    Article  PubMed  Google Scholar 

  36. M. Theodoropoulou, T. Arzberger, Y. Gruebler, M.L. Jaffrain-Rea, J. Schlegel, L. Schaaf, E. Petrangeli, M. Losa, G.K. Stalla, U. Pagotto, Expression of epidermal growth factor receptor in neoplastic pituitary cells: evidence for a role in corticotropinoma cells. J. Endocrinol. 183(2), 385–394 (2004)

    Article  PubMed  CAS  Google Scholar 

  37. O. Cooper, G. Vlotides, H. Fukuoka, M.I. Greene, S. Melmed, Expression and function of ErbB receptors and ligands in the pituitary. Endocr. Relat. Cancer 18(6), R197–R211 (2011)

    Article  PubMed  CAS  Google Scholar 

  38. P.P. Di Fiore, G. Scita, Eps8 in the midst of GTPases. Int. J. Biochem. Cell Biol. 34(10), 1178–1183 (2002)

    Article  PubMed  Google Scholar 

  39. F. Fazioli, L. Minichiello, V. Matoska, P. Castagnino, T. Miki, W.T. Wong, P.P. Di Fiore, Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12(10), 3799–3808 (1993)

    PubMed  CAS  Google Scholar 

  40. M. Innocenti, E. Frittoli, I. Ponzanelli, J.R. Falck, S.M. Brachmann, P.P. Di Fiore, G. Scita, Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell Biol. 160(1), 17–23 (2003)

    Article  PubMed  CAS  Google Scholar 

  41. Y. Greenman, S. Melmed, Diagnosis and management of nonfunctioning pituitary tumors. Annu. Rev. Med. 47, 95–106 (1996)

    Article  PubMed  CAS  Google Scholar 

  42. I. Ewing, S. Pedder-Smith, G. Franchi, M. Ruscica, M. Emery, V. Vax, E. Garcia, S. Czirjak, Z. Hanzely, B. Kola, M. Korbonits, A.B. Grossman, A mutation and expression analysis of the oncogene BRAF in pituitary adenomas. Clin. Endocrinol (Oxf) 66(3), 348–352 (2007)

    Article  CAS  Google Scholar 

  43. T.W. de Bruin, D.J. Kwekkeboom, J.W. Van’t Verlaat, J.C. Reubi, E.P. Krenning, S.W. Lamberts, R.J. Croughs, Clinically nonfunctioning pituitary adenoma and octreotide response to long term high dose treatment, and studies in vitro. J. Clin. Endocrinol. Metab. 75(5), 1310–1317 (1992)

    Article  PubMed  Google Scholar 

  44. M. Gasperi, L. Petrini, R. Pilosu, M. Nardi, A. Marcello, F. Mastio, L. Bartalena, E. Martino, Octreotide treatment does not affect the size of most non-functioning pituitary adenomas. J. Endocrinol. Invest. 16(7), 541–543 (1993)

    PubMed  CAS  Google Scholar 

  45. T. Florio, S. Thellung, S. Arena, A. Corsaro, R. Spaziante, G. Gussoni, G. Acuto, M. Giusti, G. Giordano, G. Schettini, Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro. Eur. J. Endocrinol. 141(4), 396–408 (1999)

    Article  PubMed  CAS  Google Scholar 

  46. H. Padova, H. Rubinfeld, M. Hadani, Z.R. Cohen, D. Nass, J.E. Taylor, M.D. Culler, I. Shimon, Effects of selective somatostatin analogs and cortistatin on cell viability in cultured human non-functioning pituitary adenomas. Mol. Cell. Endocrinol. 286(1–2), 214–218 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. U. Renner, J. Mojto, M. Lange, O.A. Muller, K. von Werder, G.K. Stalla, Effect of bromocriptine and SMS 201-995 on growth of human somatotrophic and non-functioning pituitary adenoma cells in vitro. Eur. J. Endocrinol. 130(1), 80–91 (1994)

    Article  PubMed  CAS  Google Scholar 

  48. M.C. Zatelli, D. Piccin, C. Vignali, F. Tagliati, M.R. Ambrosio, M. Bondanelli, V. Cimino, A. Bianchi, H.A. Schmid, M. Scanarini, A. Pontecorvi, L. De Marinis, G. Maira, E.C. degli Uberti, Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 14(1), 91–102 (2007)

    Article  PubMed  CAS  Google Scholar 

  49. E. Hubina, A.M. Nanzer, M.R. Hanson, E. Ciccarelli, M. Losa, D. Gaia, M. Papotti, M.R. Terreni, S. Khalaf, S. Jordan, S. Czirjak, Z. Hanzely, G.M. Nagy, M.I. Goth, A.B. Grossman, M. Korbonits, Somatostatin analogues stimulate p27 expression and inhibit the MAP kinase pathway in pituitary tumours. Eur. J. Endocrinol. 155(2), 371–379 (2006)

    Article  PubMed  CAS  Google Scholar 

  50. M. Theodoropoulou, J. Zhang, S. Laupheimer, M. Paez-Pereda, C. Erneux, T. Florio, U. Pagotto, G.K. Stalla, Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res. 66(3), 1576–1582 (2006)

    Article  PubMed  CAS  Google Scholar 

  51. T. Florio, F. Barbieri, R. Spaziante, G. Zona, L.J. Hofland, P.M. van Koetsveld, R.A. Feelders, G.K. Stalla, M. Theodoropoulou, M.D. Culler, J. Dong, J.E. Taylor, J.P. Moreau, A. Saveanu, G. Gunz, H. Dufour, P. Jaquet, Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr. Relat. Cancer 15(2), 583–596 (2008)

    Article  PubMed  CAS  Google Scholar 

  52. E. Peverelli, L. Olgiati, M. Locatelli, P. Magni, M.F. Fustini, G. Frank, G. Mantovani, P. Beck-Peccoz, A. Spada, A. Lania, The dopamine-somatostatin chimeric compound BIM-23A760 exerts antiproliferative and cytotoxic effects in human non-functioning pituitary tumors by activating ERK1/2 and p38 pathways. Cancer Lett. 288(2), 170–176 (2010)

    Article  PubMed  CAS  Google Scholar 

  53. P. Luciani, S. Gelmini, E. Ferrante, A. Lania, S. Benvenuti, S. Baglioni, G. Mantovani, I. Cellai, F. Ammannati, A. Spada, M. Serio, A. Peri, Expression of the antiapoptotic gene seladin-1 and octreotide-induced apoptosis in growth hormone-secreting and nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 90(11), 6156–6161 (2005)

    Article  PubMed  CAS  Google Scholar 

  54. M. Korbonits, E. Carlsen, Recent clinical and pathophysiological advances in non-functioning pituitary adenomas. Horm. Res. 71(Suppl 2), 123–130 (2009)

    Article  PubMed  CAS  Google Scholar 

  55. V. Cerovac, J. Monteserin-Garcia, H. Rubinfeld, M. Buchfelder, M. Losa, T. Florio, M. Paez-Pereda, G.K. Stalla, M. Theodoropoulou, The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res. 70(2), 666–674 (2010)

    Article  PubMed  CAS  Google Scholar 

  56. M. Breuleux, M. Klopfenstein, C. Stephan, C.A. Doughty, L. Barys, S.M. Maira, D. Kwiatkowski, H.A. Lane, Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol. Cancer Ther. 8(4), 742–753 (2009)

    Article  PubMed  CAS  Google Scholar 

  57. A. Gorshtein, H. Rubinfeld, E. Kendler, M. Theodoropoulou, V. Cerovac, G.K. Stalla, Z.R. Cohen, M. Hadani, I. Shimon, Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr. Relat. Cancer 16(3), 1017–1027 (2009)

    Article  PubMed  CAS  Google Scholar 

  58. M.C. Zatelli, M. Minoia, C. Filieri, F. Tagliati, M. Buratto, M.R. Ambrosio, M. Lapparelli, M. Scanarini, E.C. Degli Uberti, Effect of everolimus on cell viability in nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 95(2), 968–976 (2010)

    Article  PubMed  CAS  Google Scholar 

  59. K.E. O’Reilly, F. Rojo, Q.B. She, D. Solit, G.B. Mills, D. Smith, H. Lane, F. Hofmann, D.J. Hicklin, D.L. Ludwig, J. Baselga, N. Rosen, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66(3), 1500–1508 (2006)

    Article  PubMed  Google Scholar 

  60. M. Lee, M. Theodoropoulou, J. Graw, F. Roncaroli, M.C. Zatelli, N.S. Pellegata, Levels of p27 sensitize to dual PI3K/mTOR inhibition. Mol. Cancer Ther. 10(8), 1450–1459 (2011)

    Article  PubMed  CAS  Google Scholar 

  61. B. Kola, M. Korbonits, S. Diaz-Cano, G. Kaltsas, D.G. Morris, S. Jordan, L. Metherell, M. Powell, S. Czirjak, G. Arnaldi, S. Bustin, M. Boscaro, F. Mantero, A.B. Grossman, Reduced expression of the growth hormone and type 1 insulin-like growth factor receptors in human somatotroph tumours and an analysis of possible mutations of the growth hormone receptor. Clin. Endocrinol (Oxf) 59(3), 328–338 (2003)

    Article  CAS  Google Scholar 

  62. H. Rubinfeld, A. Gorshtein, E. Kendler, A. Kamar, O. Cohen, M. Hadani, I. Shimon IGF-1 induces tumorigenesis in human pituitary tumors—functional blockade of IGF-1 receptor as a novel therapeutic approach in non-functioning tumors, in 2nd ENEA Workshop, Aggressive Pituitary Tumors, Munich, 2011, p. 71

  63. F.M. Sirotnak, M.F. Zakowski, V.A. Miller, H.I. Scher, M.G. Kris, Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res. 6(12), 4885–4892 (2000)

    PubMed  CAS  Google Scholar 

  64. H. Fukuoka, O. Cooper, J. Mizutani, Y. Tong, S.G. Ren, S. Bannykh, S. Melmed, HER2/ErbB2 receptor signaling in rat and human prolactinoma cells: strategy for targeted prolactinoma therapy. Mol. Endocrinol. 25(1), 92–103 (2011)

    Article  PubMed  CAS  Google Scholar 

  65. G. Vlotides, E. Siegel, I. Donangelo, S. Gutman, S.G. Ren, S. Melmed, Rat prolactinoma cell growth regulation by epidermal growth factor receptor ligands. Cancer Res. 68(15), 6377–6386 (2008)

    Article  PubMed  CAS  Google Scholar 

  66. U. Kumar, Cross-talk and modulation of signaling between somatostatin and growth factor receptors. Endocrine 40(2), 168–180 (2011)

    Article  PubMed  CAS  Google Scholar 

  67. X. Shi, B. Tao, H. He, Q. Sun, C. Fan, L. Bian, W. Zhao, Y.C. Lu, MicroRNAs-based network: a novel therapeutic agent in pituitary adenoma. Med. Hypotheses 78(3), 380–384 (2012)

    Article  PubMed  CAS  Google Scholar 

  68. X. Zhan, D.M. Desiderio, Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med. Genomics 3, 13 (2010)

    Article  PubMed  Google Scholar 

Download references

Disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Shimon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinfeld, H., Shimon, I. PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways perturbations in non-functioning pituitary adenomas. Endocrine 42, 285–291 (2012). https://doi.org/10.1007/s12020-012-9682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9682-3

Keywords

Navigation