, Volume 42, Issue 3, pp 599–605 | Cite as

The study of soluble intercellular adhesion molecule-1 and ghrelin in adolescents with family history of type 2 diabetes

  • Bo-Wei Liu
  • Qiang Lu
  • Chun-Ming Ma
  • Jun-Ru Liu
  • Dong-Hui Lou
  • Xiao-Li Liu
  • Fu-Zai YinEmail author
Original Article


The purpose of this study was to observe both the changes of soluble intercellular adhesion molecule-1 (sICAM-1) and ghrelin in adolescents with family history of type 2 diabetes (FHD) and the relationship between sICAM-1 and ghrelin. This case–control study included 63 adolescents (boys/girls 29/34, age 14.1 ± 0.7 years) without FHD (FHD−) and 67 adolescents (boys/girls 33/34, age 14.0 ± 0.8 years) with FHD (FHD+). Anthropometric measurements, including height, weight, waist circumference (WC), and blood pressure, were obtained. Blood samples were collected, and fasting plasma glucose (FPG), serum lipids, true insulin, sICAM-1, and ghrelin were assayed. The results showed that the age and gender were similar in two groups (P > 0.05). Body mass index (BMI), WC, FPG, fasting insulin, HOMA-IR, and sICAM-1 were all significantly higher in the FHD+ group than in the FHD− group (P < 0.05). Ghrelin was significantly lower in the FHD+ group than in the FHD− group (P < 0.05). sICAM-1 was positively correlated with WC (r = 0.178, P = 0.043), fasting insulin (r = 0.195, P = 0.026), HOMA-IR (r = 0.197, P = 0.024), and ghrelin (r = 0.290, P = 0.001). After multivariate analysis, the ghrelin (β = 0.788, 95 % CI: 0.416–1.159, P = 0.000) and HOMA-IR (β = 0.106, 95 % CI: 0.045–0.167, P = 0.001) maintained an independent association with sICAM-1. These findings led to the conclusion that endothelial dysfunction and decline of ghrelin were found in adolescents with family history of diabetes. The decline of ghrelin maybe a protection mechanism for endothelial function in adolescents with family history of diabetes and should be examined in future studies.


Type 2 diabetes Family history Soluble intercellular adhesion molecule-1 Ghrelin 


Financial support

This study was self-financed.

Conflict of interest



  1. 1.
    M. Rosenbaum, C. Nonas, M. Horlick, I. Fennoy, I. Vargas, H. Schachner, P. Kringas, K. Stanton, Camino diabetes prevention group. Beta-cell function and insulin sensitivity in early adolescence: association with body fatness and family history of type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 89, 5469–5476 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    M.K. Nandkeoliar, M. Dharmalingam, S.R. Marcus, Diabetes mellitus in Asian Indian children and adolescents. J. Pediatr. Endocrinol. Metab. 20, 1109–1114 (2007)PubMedCrossRefGoogle Scholar
  3. 3.
    B.W. Liu, Q. Lu, C.M. Ma, S.Y. Wang, D.H. Lou, X.L. Lou, F.Z. Yin, Factors associated with insulin resistance and fasting plasma ghrelin levels in adolescents with obesity and family history of type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 117, 600–604 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    M.P. Bahíllo-Curieses, F. Hermoso-López, M.J. Martínez-Sopena, P. Cobreros-García, P. García-Saseta, M. Tríguez-García, J.M. Marugán-Miguelsanz, Prevalence of insulin resistance and impaired glucose tolerance in a sample of obese Spanish children and adolescents. Endocrine 41, 289–295 (2012)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Scuteri, M. Tesauro, S. Rizza, M. Iantorno, M. Federici, D. Lauro, U. Campia, M. Turriziani, A. Fusco, G. Cocciolillo, R. Lauro, Endothelial function and arterial stiffness in normotensive normoglycemic first-degree relatives of diabetic patients are independent of the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 18, 349–356 (2008)PubMedCrossRefGoogle Scholar
  6. 6.
    N. Alvarado-Vásquez, E. Zapata, S. Alcázar-Leyva, F. Massó, L.F. Montaño, Reduced NO synthesis and eNOS mRNA expression in endothelial cells from newborns with a strong family history of type 2 diabetes. Diabetes Metab. Res. Rev. 23, 559–566 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, K. Kangawa, Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999)PubMedCrossRefGoogle Scholar
  8. 8.
    J.B. Li, A. Asakawa, K. Cheng, Y. Li, H. Chaolu, M. Tsai, A. Inui, Biological effects of obestatin. Endocrine 39, 205–211 (2011)PubMedCrossRefGoogle Scholar
  9. 9.
    G. Zhang, X. Yin, Y. Qi, L. Pendyala, J. Chen, D. Hou, C. Tang, Ghrelin and cardiovascular diseases. Curr. Cardiol. Rev. 6, 62–70 (2010)PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Chen, W. Osika, F. Dangardt, L.M. Gan, B. Strandvik, P. Friberg, High levels of soluble intercellular adhesion molecule-1, insulin resistance and saturated fatty acids are associated with endothelial dysfunction in healthy adolescents. Atherosclerosis 211, 638–642 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    L.G. de Aguiar, L.R. Bahia, N. Villela, C. Laflor, F. Sicuro, N. Wiernsperger, D. Bottino, E. Bouskela, Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care 29, 1083–1089 (2006)PubMedCrossRefGoogle Scholar
  12. 12.
    D.K. Brake, E.O. Smith, H. Mersmann, C.W. Smith, R.L. Robker, ICAM-1 expression in adipose tissue: effects of diet-induced obesity in mice. Am. J. Physiol. Cell Physiol. 291, C1232–C1239 (2006)PubMedCrossRefGoogle Scholar
  13. 13.
    H.M. Lee, H.J. Kim, K.J. Won, W.S. Choi, K.Y. Lee, Y.M. Bae, P.J. Park, T.K. Park, Y.L. Lee, C.K. Lee, B. Kim, Contribution of soluble intercellular adhesion molecule-1 to the migration of vascular smooth muscle cells. Eur. J. Pharmacol. 579, 260–268 (2008)PubMedCrossRefGoogle Scholar
  14. 14.
    M. Buemi, D. Marino, F. Floccari, A. Ruello, L. Nostro, C. Aloisi, M.T. Marino, G. Di Pasquale, F. Corica, N. Frisina, Effect of interleukin 8 and ICAM-1 on calcium-dependent outflow of K+ in erythrocytes from subjects with essential hypertension. Curr. Med. Res. Opin. 20, 19–24 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    L. Soriano-Guillén, V. Barrios, G. Martos, J.A. Chowen, A. Campos-Barros, J. Argente, Effect of oral glucose administration on ghrelin levels in obese children. Eur. J. Endocrinol. 151, 119–121 (2004)PubMedCrossRefGoogle Scholar
  16. 16.
    T. Østergård, T.K. Hansen, B. Nyholm, C.H. Gravholt, C.B. Djurhuus, H. Hosoda, K. Kangawa, O. Schmitz, Circulating ghrelin concentrations are reduced in healthy offspring of type 2 diabetic subjects, and are increased in women independent of a family history of type 2 diabetes. Diabetologia 46, 134–136 (2003)PubMedGoogle Scholar
  17. 17.
    Y. Nanjo, H. Adachi, Y. Hirai, M. Enomoto, A. Fukami, M. Otsuka, K. Yoshikawa, K. Yokoi, K. Ogata, E. Tsukagawa, A. Kasahara, K. Murayama, H. Yasukawa, M. Kojima, T. Imaizumi, Factors associated with plasma ghrelin level in Japanese general population. Clin. Endocrinol. (Oxf) 74, 453–458 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Tesauro, F. Schinzari, M. Caramanti, R. Lauro, C. Cardillo, Cardiovascular and metabolic effects of ghrelin. Curr. Diabetes Rev. 6, 228–235 (2010)PubMedCrossRefGoogle Scholar
  19. 19.
    B. Deng, L. Fang, X. Chen, M. Chen, X. Xie, Effect of ghrelin on angiotensin II induced human umbilicus vein endothelial cell oxidative stress and endothelial cell injury. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35, 1037–1047 (2010)PubMedGoogle Scholar
  20. 20.
    M.R. Skilton, S. Nakhla, D.P. Sieveking, I.D. Caterson, D.S. Celermajer, Pathophysiological levels of the obesity related peptides resistin and ghrelin increase adhesion molecule expression on human vascular endothelial cells. Clin. Exp. Pharmacol. Physiol. 32, 839–844 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    S.M. Pöykkö, E. Kellokoski, O. Ukkola, H. Kauma, M. Päivänsalo, Y.A. Kesäniemi, S. Hörkkö, Plasma ghrelin concentrations are positively associated with carotid artery atherosclerosis in males. J. Intern. Med. 260, 43–52 (2006)PubMedCrossRefGoogle Scholar
  22. 22.
    E. Kellokoski, A. Kunnari, M. Jokela, S. Mäkelä, Y.A. Kesäniemi, S. Hörkkö, Ghrelin and obestatin modulate early atherogenic processes on cells: enhancement of monocyte adhesion and oxidized low-density lipoprotein binding. Metabolism 58, 1572–1580 (2009)PubMedCrossRefGoogle Scholar
  23. 23.
    S. Lee, N. Gungor, F. Bacha, S. Arslanian, Insulin resistance: link to the components of the metabolic syndrome and biomarkers of endothelial dysfunction in youth. Diabetes Care 30, 2091–2097 (2007)PubMedCrossRefGoogle Scholar
  24. 24.
    J.B. Meigs, F.B. Hu, N. Rifai, J.E. Manson, Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 291, 1978–1986 (2004)PubMedCrossRefGoogle Scholar
  25. 25.
    L. Pacifico, E. Poggiogalle, F. Costantino, C. Anania, F. Ferraro, F. Chiarelli, C. Chiesa, Acylated and nonacylated ghrelin levels and their associations with insulin resistance in obese and normal weight children with metabolic syndrome. Eur. J. Endocrinol. 161, 861–870 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bo-Wei Liu
    • 1
  • Qiang Lu
    • 1
  • Chun-Ming Ma
    • 1
  • Jun-Ru Liu
    • 1
  • Dong-Hui Lou
    • 1
  • Xiao-Li Liu
    • 1
  • Fu-Zai Yin
    • 1
    Email author
  1. 1.Department of EndocrinologyThe First Hospital of QinhuangdaoQinhuangdaoChina

Personalised recommendations