, Volume 42, Issue 1, pp 88–96 | Cite as

The effects of angiotensin peptides and angiotensin receptor antagonists on the cell growth and angiogenic activity of GH3 lactosomatotroph cells in vitro

  • Dorota Ptasinska-Wnuk
  • Slawomir A. Mucha
  • Hanna Lawnicka
  • Jolanta Fryczak
  • Jolanta Kunert-Radek
  • Marek Pawlikowski
  • Henryk Stepien
Original Article


The local renin–angiotensin system (RAS) is present in the pituitary gland, and inhibitory effects of angiotensins on the lactosomatotroph (GH3) cell growth have been revealed. The aim of this study was to examine the influence of various angiotensin peptides and angiotensin AT1, AT2, and AT4 receptors antagonists on the cell proliferation, viability, and VEGF secretion in pituitary lactosomatotroph GH3 cell culture in order to identify receptors involved in antiproliferative effects of angiotensins on GH3 tumor cells. Cell viability and proliferation using Mosmann method and BrdU incorporation during DNA synthesis, and VEGF secretion using ELISA assay were estimated. The inhibitory effects of ang II, ang IV, and ang 5–8 on the cell viability and BrdU incorporation in GH3 culture were not abolished by AT1, AT2, and AT4 receptors antagonists. Ang II, as well as ang III and ang IV at lower concentrations stimulated the secretion of VEGF in GH3 cell culture. The secretion of VEGF was inhibited by ang III and ang IV at higher concentrations. AT1 and AT2 receptors antagonists prevented the proangiogenic effects of ang II. Ang II, ang IV, and ang 5–8 decrease the cell number and proliferation in GH3 cell culture independently of the AT1, AT2, and AT4 receptors. These peptides affect also secretion of VEGF in culture examined. Both the AT1 and AT2 receptors appear to mediate the proangiogenic effects of ang II.


Pituitary tumor GH3 cell line Angiotensin Angiotensin receptor antagonist Cell proliferation VEGF 


  1. 1.
    I. Haulica, W. Bild, D.N. Serban, Angiotensin peptides and their pleiotropic actions. J. Renin. Angiotensin Aldosterone Syst. 6, 121–131 (2005)PubMedCrossRefGoogle Scholar
  2. 2.
    D.E. Dotal, Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am. J. Hypertens. 5, 276–280 (1992)Google Scholar
  3. 3.
    P.S. Leung, Pancreatic RAS. Adv. Exp. Med. Biol. 690, 89–105 (2010)PubMedCrossRefGoogle Scholar
  4. 4.
    S. Louis, L. Saward, P. Zahradka, Both AT1 and AT2 receptors mediate proliferation and migration of porcine vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 301, H746–H756 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    J.L. Zhuo, X.C. Li, New insights and perspectives on intrarenal renin–angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 32, 1551–1565 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    M. de Gasparo, K.J. Catt, T. Inagami, J.W. Wright, T.H. Unger, International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52, 415–472 (2000)PubMedGoogle Scholar
  7. 7.
    J. Kunert-Radek, H. Stępień, J. Komorowski, M. Pawlikowski, Stimulatory effect of angiotensin II on the proliferation of mouse spleen lymphocytes in vitro is mediated via both types of angiotensin II receptors. Biochem. Biophys. Res. Commun. 198, 1034–1039 (1994)PubMedCrossRefGoogle Scholar
  8. 8.
    M. Pawlikowski, G. Mełeń Mucha, S. Mucha, The involvement of the renin–angiotensin system in the regulation of cell proliferation in the rat endometrium. Cell. Mol. Life Sci. 55, 506–510 (1999)PubMedCrossRefGoogle Scholar
  9. 9.
    M. Pawlikowski, A. Gruszka, S. Mucha, G. Melen-Mucha, Angiotensins II and IV stimulate the rat adrenocortical cell proliferation acting via different receptors. Endocr. Regul. 35, 139–142 (2001)PubMedGoogle Scholar
  10. 10.
    M. Pawlikowski, G. Melen-Mucha, S. Mucha, The involvement of angiotensins in the control of prostatic epithelial cell proliferation in the rat. Folia Histochem. Cytobiol. 39, 341–343 (2001)PubMedGoogle Scholar
  11. 11.
    L. Bu, S. Qu, X. Gao, J.J. Zou, W. Tang, L.L. Sun, Z.M. Liu, Enhanced angiotensin-converting enzyme 2 attenuates angiotensin II-induced collagen production via AT1 receptor-phosphoinositide 3-kinase-Akt pathway. Endocrine 39, 139–147 (2011)PubMedCrossRefGoogle Scholar
  12. 12.
    P. Liakos, N. Bourmeyster, G. Defaye, E.M. Chambaz, S.P. Bottari, ANG II AT1 and AT2 receptors both inhibit bFGF-induced proliferation of bovine adrenocortical cells. Am. J. Physiol. Cell Physiol. 273, C1324–C1334 (1997)Google Scholar
  13. 13.
    M. Stoll, U.M. Steckelings, M. Paul, S.P. Bottari, R. Metzger, T. Unger, The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J. Clin. Invest. 95, 651–657 (1995)PubMedCrossRefGoogle Scholar
  14. 14.
    M. Otis, S. Campbell, M.D. Payet, N. Gallo-Payet, Angiotensin II stimulates protein synthesis and inhibits proliferation in primary cultures of rat adrenal glomerulosa cells. Endocrinology 146, 633–642 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    M. Otis, S. Campbell, M.D. Payet, N. Gallo-Payet, The growth-promoting effects of angiotensin II in adrenal glomerulosa cells: an interactive tale. Mol. Cell. Endocrinol. 273, 1–5 (2007)PubMedCrossRefGoogle Scholar
  16. 16.
    H. Lawnicka, A.M. Potocka, A. Juzala, M.C. Fournie-Zaluski, M. Pawlikowski, Angiotensin II and its fragment (angiotensin III and angiotensin IV) decrease the growth of DU-145 prostate cancer cells in vitro. Med. Sci. Monit. 10, BR410–413 (2004)PubMedGoogle Scholar
  17. 17.
    A.S. Greene, S.L. Amaral, Microvascular angiogenesis and the renin–angiotensin system. Curr. Hypertens. Rep. 4, 56–62 (2002)PubMedCrossRefGoogle Scholar
  18. 18.
    F.A.C. Le Noble, J.W.M. Hekking, H.W.M. Van Straaten, D.W. Slaaf, H.A.J. Struyker Boudier, Angiotensin II stimulates angiogenesis in the chorio-allantoic membrane of the chick embryo. Eur. J. Pharmacol. 195, 305–306 (1991)PubMedCrossRefGoogle Scholar
  19. 19.
    D.H. Munzenmaier, A.S. Greene, Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 27(pt 2), 760–765 (1996)PubMedCrossRefGoogle Scholar
  20. 20.
    D.A. Walsh, D.E. Hu, J. Wharton, J.D. Catravas, D.R. Blake, T.P.D. Fan, Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. Br. J. Pharmacol. 120, 1302–1311 (1997)PubMedCrossRefGoogle Scholar
  21. 21.
    T. Imanishi, T. Hano, I. Nishio, Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens. Res. 2004(27), 101–108 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Otani, H. Takagi, H. Oh, K. Zuzuma, M. Matsumura, F. Ikeda, Y. Honda, Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes. Invest. Ophthalmol. Vis. Sci. 41, 1192–1199 (2000)PubMedGoogle Scholar
  23. 23.
    C. Pupilli, L. Lasagni, P. Romagnani, B.F. Bellini, M. Mannelli, N. Misciglia, C. Mavilla, U. Vellei, D. Villari, M. Serio, Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J. Am. Soc. Nephrol. 10, 245–255 (1999)PubMedGoogle Scholar
  24. 24.
    H. Yoshiji, S. Kuriyama, H. Fukui, Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol. 23, 348–356 (2002)PubMedCrossRefGoogle Scholar
  25. 25.
    Y.D. Li, E.R. Block, J.M. Patel, Activation of multiple signaling modules is critical for angiotensin IV-induced lung endothelial cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L707–L716 (2002)PubMedGoogle Scholar
  26. 26.
    J.M. Patel, Y.D. Li, J.L. Zhang, C.H. Gelband, M.K. Raizada, E.R. Block, Increased expression of calreticulin is linked to ang IV-mediated activation of lung endothelial NOS. Am. Physiol. Lung Cell. Mol. Physiol. 277, L794–L801 (1999)Google Scholar
  27. 27.
    S.Y. Chai, R. Fernando, G. Peck, S.Y. Ye, F.A. Mendelsohn, T.A. Jenkins, A.L. Albiston, The angiotensin IV/AT4 receptor. Cell. Mol. Life Sci. 61, 2728–2737 (2004)PubMedCrossRefGoogle Scholar
  28. 28.
    L.T. Krebs, E.A. Kramar, J.M. Hanesworth, M.F. Sardinia, A.E. Ball, T.J.W. Wrigh, J.W. Harding, Characterization of the binding properties and physiological action of divalinal-angiotensin IV, a putative receptor antagonist. Regul. Pept. 67, 123–130 (1996)PubMedCrossRefGoogle Scholar
  29. 29.
    M. Pawlikowski, Immunohistochemical detection of angiotensin receptors AT1 and AT2 in normal rat pituitary gland, estrogen-induced rat pituitary tumor and human pituitary adenomas. Folia Histochem. Cytobiol. 44, 173–177 (2006)PubMedGoogle Scholar
  30. 30.
    E. Vila–Porcile, A. Barret, P. Corvol, Secretion of renin–angiotensin system (RAS) components by normal and tumoral lactotropes: a comparative study using reverse hemolytic plaque assay (RHPA) and immunoelectron microscopy. J. Histoch. Cytochem. 48, 1691–1704 (2000)CrossRefGoogle Scholar
  31. 31.
    W.F. Ganong, Angiotensin II in the brain and pituitary: contrasting roles in the regulation of adenohypophyseal secretion. Horm. Res. 31, 24–31 (1989)PubMedCrossRefGoogle Scholar
  32. 32.
    E. Sánchez-Lemus, J. Benicky, J. Pavel, J.M. Saavedra, In vivo Angiotensin II AT1 receptor blockade selectively inhibits LPS-induced innate immune response and ACTH release in rat pituitary gland. Brain Behav. Immun. 23, 945–957 (2009)PubMedCrossRefGoogle Scholar
  33. 33.
    M. Pawlikowski, S. Mucha, J. Kunert-Radek, H. Stępień, H. Pisarek, A. Stawowy, Is estrogen-induced pituitary hyperplasia and hiperprolactinemia mediated by angiotensin II?, in Current Concept: Tissue Rennin–Angiotensin Systems as Local Regulators in Reproductive, Endocrine Organs, ed. by A.K. Mukhopadyay, M.K. Raizada (Plenum Press, New York, 1995), pp. 371–378Google Scholar
  34. 34.
    C. Moreau, R. Rasolonjanahary, V. Audinot, C. Kordon, A. Enjalbert, Angiotensin II effects on second messengers involved in prolactin secretion are mediated by AT1 receptor in anterior pituitary cells. Mol. Cell. Neurosci. 5, 597–603 (1994)PubMedCrossRefGoogle Scholar
  35. 35.
    M. Pawlikowski, J. Kunert-Radek, Angiotensin IV stimulates the proliferation of rat anterior pituitary cells in vitro. Biochem. Biophys. Res. Commun. 232, 292–293 (1997)PubMedCrossRefGoogle Scholar
  36. 36.
    S. Mucha, H. Sępień, A. Lachowicz-Ochędalska, M. Pawlikowski, The effect of angiotensin-converting enzyme inhibition on estrogen-induced cell proliferation in the rat pituitary gland. Neuroendocrinol. Lett. 15, 369–375 (1993)Google Scholar
  37. 37.
    D. Ptasinska-Wnuk, H. Lawnicka, S. Mucha, J. Kunert-Radek, M. Pawlikowski, H. Stepien, Angiotensins inhibit cell growth in GH3 lactosomatotroph pituitary tumor cell culture: a possible involvement of the p44/42 and p38 MAPK pathways. Sci. World J. in press (2012)Google Scholar
  38. 38.
    K. Egarni, T. Murohara, T. Shimada, K. Sasaki, S. Shintani, T. Sugaya, M. Ishii, T. Akagi, H. Ikeda, T. Matsuishi, T. Imaizumi, Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J. Clin. Invest. 112, 67–75 (2003)Google Scholar
  39. 39.
    M. Fujita, I. Hayashi, S. Yamashina, M. Itoman, M. Majima, Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem. Biophys. Res. Commun. 294, 411–447 (2002)CrossRefGoogle Scholar
  40. 40.
    N. Imai, T. Hashimoto, M. Kihara, S. Yoshida, I. Kawana, T. Yazawa, H. Kitamura, S. Umemura, Roles for host and tumor angiotensin II type 1 receptor in tumor growth and tumor-associated angiogenesis. Lab. Invest. 87, 189–198 (2007)PubMedCrossRefGoogle Scholar
  41. 41.
    A. H. Tashjian Jr, F.C. Bancroft, L. Levine, Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells. Differential effects of hydrocortisone and tissue extracts. J. Cell Biol. 47, 61–70 (1970)PubMedCrossRefGoogle Scholar
  42. 42.
    Z. Lenkei, A.M. Nuyt, D. Grouselle, P. Corvol, C. Llorens-Cortes, Identification of endocrine cell populations expressing the AT1B subtype of angiotensin II receptors in the anterior pituitary. Endocrinology 140, 472–477 (1999)PubMedCrossRefGoogle Scholar
  43. 43.
    A.L. Ochedalska, E. Rebas, J. Kunert-Radek, M.C. Fournie-Zaluski, M. Pawlikowski, Angiotensins II and IV stimulate the activity of tyrosine kinases in estrogen-induced rat pituitary tumors. Biochem. Biophys. Res. Commun. 297, 931–933 (2002)PubMedCrossRefGoogle Scholar
  44. 44.
    D. Ptasinska-Wnuk, J. Kunert-Radek, M. Pawlikowski, Angiotensins II and IV stimulate the rat anterior pituitary cell proliferation independently of the AT1 receptor subtype. Neuroendorinol. Lett. 24, 397–400 (2003)Google Scholar
  45. 45.
    E. Rebas, A. Lachowicz-Ochedalska, M. Pawlikowski, Angiotensin IV stimulates the activity of tyrosine kinases in rat anterior pituitary gland acting via AT1-like receptors? J. Physiol. Pharmacol. 55, 107–111 (2004)PubMedGoogle Scholar
  46. 46.
    P.E. Gallagher, E.A. Tallant, Inhibition of human lung cancer by angiotensin 1–7. Carcinogenesis 25, 2045–2052 (2004)PubMedCrossRefGoogle Scholar
  47. 47.
    C. Suárez, I.G. Tornadú, C. Cristina, J. Vela, A.G. Iglesias, C. Libertun, G. Díaz-Torga, D. Becu-Villalobos, Angiotensin and calcium signaling in the pituitary and hypothalamus. Cell. Mol. Neurobiol. 22, 315–333 (2002)PubMedCrossRefGoogle Scholar
  48. 48.
    B. Williams, A.Q. Baker, B. Gallacher, D. Lodwick, Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension 25, 913–917 (1995)PubMedCrossRefGoogle Scholar
  49. 49.
    S.K. Banerjee, D.R. Campbell, A.P. Weston, D.K. Banerjee, Biphasic estrogen response on bovine adrenal medulla capillary endothelial cell adhesion, proliferation and tube formation. Mol. Cell. Biochem. 177, 97–105 (1997)PubMedCrossRefGoogle Scholar
  50. 50.
    R. Benndorf, R.H. Böger, S. Ergün, A. Steenpass, T. Wieland, Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ. Res. 93, 438–447 (2003)PubMedCrossRefGoogle Scholar
  51. 51.
    S. Fujiyama, H. Matsubara, Y. Nozawa, K. Maruyama, Y. Mori, Y. Tsutsumi, H. Masaki, Y. Uchiyama, Y. Koyama, A. Nose, O. Iba, E. Tateishi, N. Ogata, N. Jyo, S. Higashiyama, T. Iwasaka, Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ. Res. 88, 22–29 (2001)PubMedCrossRefGoogle Scholar
  52. 52.
    M. Pawlikowski, M. Grochal, A. Kulig, K. Zieliński, H. Stępień, J. Kunert-Radek, S. Mucha, The effect of angiotensin II receptor antagonist on diethylstilboestrol-induced vascular changes in the rat anterior pituitary gland: a quantitative evaluation. Histol. Histopathol. 11, 909–913 (1996)Google Scholar
  53. 53.
    B. Rizkalla, J.M. Forbes, Z. Cao, G. Boner, M.E. Cooper, Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: role of the renin–angiotensin system. J. Hypertens. 23, 153–164 (2005)PubMedCrossRefGoogle Scholar
  54. 54.
    S. Sarlos, B. Rizkalla, C.J. Moravski, Z. Cao, M.E. Cooper, J.L. Wilkinson-Berka, Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am. J. Pathol. 163, 879–887 (2003)PubMedCrossRefGoogle Scholar
  55. 55.
    X. Zhang, M. Lassila, M.E. Cooper, Z. Cao, Retinal expression of vascular endothelial growth factor is mediated by angiotensin type 1 and type 2 receptors. Hypertension 43, 276–281 (2004)PubMedCrossRefGoogle Scholar
  56. 56.
    C. Onofri, M. Theodoropoulou, M. Losa, E. Uhl, M. Lange, E. Arzt, G.K. Stalla, U. Renner, Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J. Endocrinol. 191, 249–261 (2006)PubMedCrossRefGoogle Scholar
  57. 57.
    M.C. Zatelli, D. Piccin, C. Vignali, F. Tagliati, M.R. Ambrosio, M. Bondanelli, V. Cimino, A. Bianchi, H.A. Schmid, M. Scanarini, A. Pontecorvi, L. De Marinis, G. Maira, E.C. degli Uberti, Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 14, 91–102 (2007)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dorota Ptasinska-Wnuk
    • 1
  • Slawomir A. Mucha
    • 2
  • Hanna Lawnicka
    • 3
  • Jolanta Fryczak
    • 3
  • Jolanta Kunert-Radek
    • 2
  • Marek Pawlikowski
    • 3
  • Henryk Stepien
    • 3
  1. 1.Department of EndocrinologyThe County Hospital of KutnoKutnoPoland
  2. 2.Clinic of EndocrinologyMedical University of LodzLodzPoland
  3. 3.Department of ImmunoendocrinologyMedical University of LodzLodzPoland

Personalised recommendations