Skip to main content
Log in

Medical thermography: a diagnostic approach for type 2 diabetes based on non-contact infrared thermal imaging

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

To test the potential of Infrared (IR) thermography in diagnosing as well as predicting type 2 diabetes and its complications compared with biochemical assay of HbA1c as standard. As per American Diabetes Association criteria, threshold for diagnosis of diabetes was set as HbA1c ≥ 6.5 % (7.7 mmol L−1). The total subjects (n = 62) were studied out of which control (n = 32) and diabetic subjects (n = 30). IR camera was used to capture the thermal images of the skin for diagnosis of the disease; receiver operating characteristic (ROC) curve was used to set temperature (°C) as threshold for statistically significant body regions under t test. In diabetic group, HbA1c showed negative correlation with carotid region (r = −0.471, p < 0.01) and the mean skin temperature was lower than the normal group at body regions namely knee (p = 0.002), tibia (p = 0.003), forehead (p = 0.014), and palm (p = 0.019). The palm region showed highest area under the curve of 0.711 (95 % CI: 0.581–0.842) and the threshold was set as ≤33.85 °C, thereby sensitivity (90 %) and specificity (56 %) was obtained in determining the undiagnosed diabetes with positive predictive value of 65 %, negative predictive value of 85 % and accuracy of 73 %. As HbA1c increases, skin temperature decreases. Skin temperature enables early detection of diabetes as compared to HbA1c. The decrease in skin temperature may be due to the decrease in the basal metabolic rate, poor blood perfusion and high insulin resistance. Thermography can be used as a diagnostic as well as prognostic tool for the diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 33(1), S62–S69 (2010)

    Article  Google Scholar 

  2. A. Boutayeb, E.H. Twizell, K. Achouayb, K. Chetouani, A mathematical model for the burden of diabetes and its complications. Biomed. Eng. Online 3, 20 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. B.K. Barbara, S.F. Jeffrey, Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000)

    Article  Google Scholar 

  4. International Diabetes Federation, The global burden (2011), Available from, http://www.idf.org/diabetesatlas/5e/the-global-burden. Accessed 14 Dec 2011

  5. American Diabetes Association, Standards of medical care in diabetes. Diabetes Care 34(1), S11–S61 (2011)

    Article  Google Scholar 

  6. V. Mohan, V. Vijayachandrika, V. Gokulakrishnan, R.M. Anjana, A. Ganesan, M.B. Weber et al., A1c cut points to define various glucose intolerance groups in Asian Indians. Diabetes Care 33(3), 515–519 (2010)

    Article  PubMed  CAS  Google Scholar 

  7. E.F.J. Ring, Thermal imaging today and its relevance to diabetes. J. Diabetes Sci. Technol. 4(4), 857–862 (2010)

    PubMed  Google Scholar 

  8. B.F. Jones, P. Plassmann, Digital infrared thermal imaging of human skin. IEEE Eng. Med. Biol. 21(6), 41–48 (2002)

    Article  CAS  Google Scholar 

  9. YuV Gulyaev, A.G. Markov, G. Koreneva, P.V. Zakharov, Dynamic infrared thermography in humans. IEEE Eng. Med. Biol. 14(6), 766–771 (1995)

    Article  Google Scholar 

  10. N. Kakuta, S. Yokoyama, K. Mabuchi, Human thermal models for evaluating infrared images. IEEE Eng. Med. Biol. 21(6), 65–72 (2002)

    Article  Google Scholar 

  11. N.A. Diakides, Infrared Imaging: an emerging technology in medicine. IEEE Eng. Med. Biol. 17(4), 17–18 (1998)

    Article  CAS  Google Scholar 

  12. R.J. Harding, Investigating deep venous thrombosis with infrared imaging. IEEE Eng. Med. Biol. 17(4), 43–46 (1998)

    Article  CAS  Google Scholar 

  13. F. Al-Maskari, M. El-Sadig, Prevalence of risk factors for diabetic foot complications. BMC Fam. Pract. 8, 59 (2007)

    Article  PubMed  Google Scholar 

  14. R.M. Anjana, M.K. Ali, M. Deepa, M. Datta, R. Unnikrishnan, M. Rema, V. Mohan, The need for obtaining accurate nationwide estimates of diabetes prevalence in India—Rationale for a national study on diabetes. Indian J. Med. Res. 133, 369–380 (2011)

    PubMed  CAS  Google Scholar 

  15. S. Bagavathiappan, T. Saravanan, J. Philip, T. Jayakumar, Baldev Raj, R. Karunanithi et al., Investigation of peripheral vascular disorders using thermal imaging. Br. J. Diabetes. Vasc. Dis. 8(2), 102–104 (2008)

    Article  Google Scholar 

  16. E.F.J. Ring, K. Ammer, The technique of infrared imaging in medicine. Thermol. Int. 10(1), 7–14 (2000)

    Google Scholar 

  17. A. Ramachandran, A.K. Das, S.R. Joshi, S. Shah, K.M. Prasanna Kumar, Current status of diabetes in India and need for novel therapeutic agents. J. Assoc. Physicians India 58, 7–9 (2010)

    Google Scholar 

  18. M.S. Amer, M.M. Maher, O.H. Omar, R.A. Reda, A.E. Elawam, H.S. Sweed, Carotid intima-media thickness can predict coronary atherosclerosis in diabetic elderly patients. Eur. J. Gen. Med. 7(3), 245–249 (2010)

    Google Scholar 

  19. T. Yoshimura, E. Suzuki, K. Egawa, Y. Nishio, H. Maegawa, S. Morikawa et al., Low blood flow estimates in lower-leg arteries predict cardiovascular events in Japanese patients with type 2 diabetes with normal ankle-brachial indexes. Diabetes Care 29, 1884–1890 (2006)

    Article  PubMed  Google Scholar 

  20. S. Shin, Y. Ku, N. Babu, M. Singh, Erythrocyte deformability and its variation in diabetes mellitus. Indian J. Exp. Biol. 45, 121–128 (2007)

    PubMed  CAS  Google Scholar 

  21. K. Roback, An overview of temperature monitoring devices for early detection of diabetic ulcers. Expert Rev. Med. Devices 7(5), 711–718 (2010)

    Article  PubMed  Google Scholar 

  22. M. Bharara, J.E. Cobb, D.J. Claremont, Thermography and thermometry in the assessment of diabetic neuropathic foot: a case for furthering the role of thermal techniques. Int. J. Extrem Wounds 5(4), 250–260 (2006)

    Article  CAS  Google Scholar 

  23. A.D. Baron, G. Brechtel-Hook, A. Johnson, D. Hardind, Skeletal muscle blood flow. A possible link between insulin resistance and blood pressure. Hypertension 21(2), 129–135 (1993)

    Article  PubMed  CAS  Google Scholar 

  24. M. Juonala, J.S.A. Viikari, T. Ronnemaa, H. Helenius, L. Taittonen, O.T. Raitakari, Elevated blood pressure in adolescent boys predicts endothelial dysfunction. Hypertension 48, 424–430 (2006)

    Article  PubMed  CAS  Google Scholar 

  25. Y. Chen, Y. Huang, X. Li, M. Xu, Y. Bi, Y. Zhang et al., Association of arterial stiffness with HbA1c in 1,000 type 2 diabetic patients with or without hypertension. Endocrine 36, 262–267 (2009)

    Article  PubMed  CAS  Google Scholar 

  26. D. Umpierre, P. Ribiero, C.K. Cramer, C.B. Leitao, T.N. Zucatti, M.J. Azevedo et al., Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes. JAMA 305(17), 1790–1799 (2011)

    Article  PubMed  CAS  Google Scholar 

  27. M.P. Bahillo-Curieses, F. Hermoso-Lopez, M.J. Martinez-Sopena, P. Cobreros-Garcia, P. Garcia-Saeta, M. Triguez-Garcia et al., Prevalence of insulin resistance and impaired glucose tolerance in a sample of obese Spanish children and adolescents. Endocrine (2011). doi:10.1007/s12020-011-9540-8

    Google Scholar 

  28. F. Amati, J.J. Dube, P.M. Coen, M. Stefanovic-Racic, F.G.S. Toledo, B.H. Goodpaster, Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care 32(8), 1547–1549 (2009)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We were grateful for the thermal camera support, kindly provided by the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu, India. Also, we thank the management of SRM University, Kattankulathur, Tamilnadu, India, for conducting the cost free screening camp for the welfare and the betterment of the society.

Conflict of interest

The authors declare that there is no conflict of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivanandam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivanandam, S., Anburajan, M., Venkatraman, B. et al. Medical thermography: a diagnostic approach for type 2 diabetes based on non-contact infrared thermal imaging. Endocrine 42, 343–351 (2012). https://doi.org/10.1007/s12020-012-9645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9645-8

Keywords

Navigation