Skip to main content
Log in

Gitelman's syndrome: a pathophysiological and clinical update

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Gitelman’s syndrome (GS), also known as familial hypokalemic hypomagnesemia, is a rare autosomal recessive hereditary salt-losing tubulopathy, characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria, which is usually caused by mutations in the SLC12A3 gene encoding the thiazide-sensitive sodium chloride contrasporter. Because 18–40% of suspected GS patients carry only one SLC12A3 mutant allele, large genomic rearrangements must account for unidentified mutations. The clinical manifestations of GS are highly variable in terms of age at presentation, severity of symptoms, and biochemical abnormalities. Molecular analysis in our sibling’s patients revealed compound heterozygous mutations in the coding region of SLC12A3 as underlying their disease. Such compound heterozygosity can result in disease phenotype for such loss of function mutations in the absence of homozygosis through consanguineous inheritance of mutant alleles, identical by descent. Missense mutations account for approximately 70% of the mutations in GS, and there is a predisposition to large rearrangements caused by the presence of repeated sequences within the SLC12A3. We report two adult male siblings of Jewish origin with late onset GS, who presented in their fifth decade of life with muscle weakness, hypokalemia, hypomagnesaemia, and metabolic alkalosis. Rapid clinical and biochemical improvement was achieved by replacement therapy with potassium and magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. N.V.A.M. Knoers, E.N. Levtchenko, Gitelman syndrome. Orphanet J. Rare Dis. 3, 2,21–226 (2008)

    Article  Google Scholar 

  2. N.V.A.M. Knoers, Nine inherited forms of renal hypomagnesemia: an update. Pediatr. Nephrol. 24, 697–705 (2009)

    Article  PubMed  Google Scholar 

  3. M. Roser, N. Eibl, B. Eisenhaber, J. Seringer, M. Nagel, S. Nagorka, F.C. Luft, U. Frei, M. Gollasch, Gitelman Syndrome. Hypertension 53, 893–897 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. H.W. Seyberth, An improved terminology and classification of Bartter-like Syndrome. Nat. Clin. Pract. Nephrol. 4, 560–577 (2008)

    Article  PubMed  Google Scholar 

  5. D.N. Cruz, A.J. Shaher, M.J. Bia, R.P. Lifton, D.B. Simon, Gitelman syndrome revisited: an evaluation of symptoms and health related quality of life. Kidney Int. 59, 710–717 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. A.J. Shaher, Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am. J. Med. Sci. 322, 316–332 (2001)

    Article  Google Scholar 

  7. E. Riveira-Munoz, Q. Chang, R.J. Bindels, O. Devuyst, Gitelman’s syndrome: towards genotype-phenotype correlations? Pediatr. Nephrol. 22, 326–332 (2007)

    Article  PubMed  Google Scholar 

  8. E. Coto, G. Arriba, M. García-Castro, F. Santos, A.I. Corao, M. Díaz, M. Sánchez Heras, M.A. Basterrechea, S. Tallón, V. Alvarez, Clinical and analytical findings in Gitelman’s syndrome associated with homozygosity for the c.1925 G > A SLC12A3 mutation. Am. J. Nephrol. 30, 218–221 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. I. Zelikovic, R. Szargal, A. Hawash, V. Labay, I. Hatib, N. Cohen, F. Nakhoul, A novel mutation in the chloride channel gene CLCNKB as a cause of Gitelman and Bartter syndrome. Kidney Int. 63, 24–32 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. R. Vargas-Poussou, K. Dahan, D. Kahila, A. Venisse, E. Riveira-Munoz, H. Debaix, B. Gristar, F. Bridoux, R. Unwin, B. Moulin, X. Jeunemaitre, Spectrum of mutations in Gitelman Syndrome. J. Am. Soc. Nephrol. 22, 693–703 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. A.S. Balavoine, P. Bataille, P. Vanhille, R. Azar et al., Phenotype-genotype correlation and follow-up in adult patients with hypokalemia of renal origin suggesting Gitelman syndrome. Eur. J. Endocrinol. 165, 665–673 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. A. Noriko, T. Nakayama, Y. Tehira, A. Haketa, M. Yabuki, T. Sekiyama, C. Nakane, H. Mano, K. Matsumoto, Two novel genotypes of the thiazide-sensitive Na-Cl cotransporter (SLC12A3) gene in patients with Gitelman’s syndrome. Endocrine 31, 149–153 (2007)

    Article  Google Scholar 

  13. F. Tammaro, A. Bettinelli, D. Cattarelli et al., Early appearance of hypokalemia in Gitelman syndrome. Pediatr. Nephrol. 25, 2179–2182 (2010)

    Article  PubMed  Google Scholar 

  14. M. Naesens, P. Steels, R. Verberckmoes, Y. Vanrenterghem, D. Kuypers, Bartter’s and Gitelman’s syndromes: from gene to clinic. Nephron Physiol. 96, 65–78 (2004)

    Article  Google Scholar 

  15. G. Graziani, C. Fedeli, L. Moroni, L. Cosmai, S. Badalamenti, C. Ponticelli, Gitelman syndrome: pathophysiological and clinical aspects. QJM 103, 741–748 (2010)

    Article  PubMed  CAS  Google Scholar 

  16. R. Tyler Miller, Genetic disorders of NaCl transport in the distal convolute tubule. Nephron Physiol. 118, 15–20 (2011)

    Article  Google Scholar 

  17. T. Nijenhuis, V. Vallon, A.W.C.M. van der Kemp, J. Loffing, J.G.J. Hoenderop, R.J.M. Bindels, Enhanced passive Ca++ reabsorption and reduced Mg++ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J. Clin. Invest. 115(6), 1651–1658 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. K. Aoki, T. Tajima, Y. Yabushita, A. Nakamura, U. Nezu, M. Takahashi, M. Kimura, Y. Terauchi, A novel initial codon mutation of the thiazide-sensitive Na-Cl Cotransporter gene in a Japanese patients with Gitelman’s Syndrome. Endocr. J. 55(3), 557–560 (2008)

    Article  PubMed  Google Scholar 

  19. L. Shao, L. Liu, Z. Miao, H. Ren, W. Wang, Y. Lang, S. Yue, N. Chen, A novel SLC12A3 splicing mutation skipping of two exons and preliminary screening for alternative splice variants in human kidney. Am. J. Nephrol. 28, 900–907 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. Y.F. Lo, K. Nozu, K. Lijima, T. Morishita, C.C. Huang, S.S. Yang, H.K. Sytwu, Y.W. Fang, M.H. Tseng, S.H. Lin, Recurrent deep intronic mutations in the SLC12A3 gene responsible for Gitelman’s syndrome. Clin. J. Am. Soc. Nephrol. 6, 630–639 (2011)

    Article  PubMed  CAS  Google Scholar 

  21. N. Jeck, M. Konrad, S. Webers, K.E. Bonzel, H.W. Seyberth, Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr. Res. 48, 754–758 (2000)

    Article  PubMed  CAS  Google Scholar 

  22. M. Enya, Y. Kanoh, T. Mune, M. Ishizawa, H. Sarui, M. Yamamoto, N. Takeda, K. Yasuda, J. Takeda, Depressive state and paresthesia dramatically improved by intravenous MgSO4 in Gitelman’s Syndrome. Intern. Med. 43(5), 410–414 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Abutboul family in memory of Daniel Abutboul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Nakhoul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakhoul, F., Nakhoul, N., Dorman, E. et al. Gitelman's syndrome: a pathophysiological and clinical update. Endocrine 41, 53–57 (2012). https://doi.org/10.1007/s12020-011-9556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9556-0

Keywords

Navigation