Skip to main content

Advertisement

Log in

Estradiol-17β modulates dose-dependently hypothalamic tyrosine hydroxylase activity inhibited by α-methylparatyrosine in the catfish Heteropneustes fossilis

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The brain is a target for organizational and activational effects of oestrogens synthesized de novo or transported from the peripheral organs. A neuroprotective role of oestrogens has been documented in a variety of vertebrates. In the present study in the catfish Heteropneustes fossilis, we have demonstrated that estradiol-17β (E2), the major circulating oestrogen at low dosages (0.05 and 0.1 μg/g body weight of fish for 3 days) stimulated hypothalamic tyrosine hydroxylase (TH) activity, and countered the negative effects of ovariectomy (3-week) or α-methylparatyrosine (α-MPT: 250 μg/g body weight, a competitive inhibitor of TH). In contrast, high dosages of E2 (1 and 2 μg/g body weight of fish for 3 days) were inhibitory and further amplified the inhibitory effects of ovariectomy and α-MPT. The inhibiting role of E2 was higher in gonad-active (prespawning) phase than gonad-inactive (resting phase) phase. The dual roles of E2 may ensure a tight regulation of catecholaminergic activity, activating and inhibiting the system against wide fluctuations that are characteristic of seasonally breeding animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L.J. Do Rego, Y.J. Seong, D. Burel, J. Le Prince, V. Luu-The, K. Tsutsui, M.C. Tonon, G. Pelletier, H. Vaudry, Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front. Neuroendocrinol. 30, 259–301 (2009)

    Article  PubMed  CAS  Google Scholar 

  2. G.V. Callard, Z. Petro, K.J. Ryan, Phylogenetic distribution of aromatase and other androgen-converting enzymes in the central nervous system. Endocrinology 103, 2283–2290 (1978)

    Article  PubMed  CAS  Google Scholar 

  3. F. Naftolin, K.J. Ryan, I.J. Davies, F. Flore, Z. Petro, M. Kuhn, R.J. White, Y. Takaota, L. Wolin, The formation of estrogens by central neuroendocrine tissues. Recent Prog. Horm. Res. 31, 295–319 (1975)

    PubMed  CAS  Google Scholar 

  4. E.E. Beaulieu, Steroid hormones in the brain: several mechanisms?, in Steroid Hormones Regulation of the Brain, ed. by K. Fuxe, J.A. Gustafsson, L. Wetterberg (Pergamon Press, Oxford, 1981), pp. 3–14

    Google Scholar 

  5. N. Diotel, L.Y. Page, K. Mouriec, S.K. Tong, E. Pellegrini, C. Vaillant, I. Anglade, F. Brion, F. Pakdel, B.-C. Chung, O. Kah, Aromatase in the brain of teleost fish: expression, regulation and putative functions. Front. Neuroendocrinol. 31, 172–192 (2010)

    Article  PubMed  CAS  Google Scholar 

  6. K. Tsutsui, Biosynthesis and biological actions of neurosteroids in brain neurons. Zool. Sci. 18, 1043–1053 (2001)

    Article  CAS  Google Scholar 

  7. V.G. Kimonides, N.H. Khatibi, C.N. Svendsen, M.V. Sofroniew, J. Herbert, Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 95, 1852–1857 (1998)

    Article  PubMed  CAS  Google Scholar 

  8. J.R. Seckl, 11β-hydroxysteroid dehydrogenase in the brain: a novel regulator of glucocorticoid action. Front. Neuroendocrinol. 18, 49–99 (1997)

    Article  PubMed  CAS  Google Scholar 

  9. H. Uno, R. Tarara, J.G. Else, M.A. Suleman, R. Sapolsky, Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 9, 1705–1711 (1989)

    PubMed  CAS  Google Scholar 

  10. G.V. Callard, A. Kruger, M. Betka, The goldfish as a model for studying neuroestrogen synthesis, location, and action in the brain and visual system. Environ. Health Perspect. 103, 51–57 (1995)

    PubMed  CAS  Google Scholar 

  11. O. Kah, E. Pellegrini, K. Mouriec, N. Diotel, I. Anglade, C. Vaillant, M.L. Thieulant, S.K. Tong, F. Brion, B.C. Chung, F. Pakdel, Oestrogens and neurogenesis: new functions for an old hormone lessons from the zebrafish. J. Soc. Biol. 203, 29–38 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. P. Ekstrom, I. Holmqvist, P. Panula, Histamine-immunoreactive neurons in the brain of the teleost Gasterosteus aculeatus L. Correlation with hypothalamic tyrosine hydroxylase and serotonin immunoreactive neurons. J. Chem. Neuroanat. 8, 75–85 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. P.J. Hornby, D.T. Piekut, Distribution of catecholamine-synthesizing enzymes in goldfish brains. Presumptive dopamine and norepinephrine neuronal organization. Brain Behav. Evol. 35, 49–64 (1990)

    Article  PubMed  CAS  Google Scholar 

  14. M. Olivereau, J.M. Olivereau, Prolactin, ACTH and growth hormone-secreting cells in the teleost pituitary gland: environmental and hypothalamic control, in “Comparative Endocrinology, Reproduction”, ed. by K.P. Joy, A. Krishna, C. Haldar (Narosa Publishing House, New Delhi, 1999), pp. 69–92

    Google Scholar 

  15. K.P. Joy, Role of central monoamines in regulation of gonadotropin-II secretion, in Neural regulation in the vertebrate endocrine system, ed. by P.D.P. Rao, R.E. Peter (Kulwer, New York, 1999), pp. 111–126

    Chapter  Google Scholar 

  16. B. Linard, S. Bennani, P. Jego, C. Saligaut, Tyrosine hydroxylase activity and dopamine turnover of rainbow trout (Oncorhynchus mykiss) brain: the special status of the hypothalamus. Fish Physiol. Biochem. 15, 41–48 (1996)

    Article  CAS  Google Scholar 

  17. H.J.Th. Goos, B. Senthilkumaran, K.P. Joy, Neuroendocrine integrative mechanisms in the control of gonadotropin secretion in teleosts, in Comparative Endocrinology and Reproduction, ed. by K.P. Joy, A. Krishna, C. Haldar (Springer, Berlin, 1999), pp. 113–136

    Google Scholar 

  18. B. Senthilkumaran, K.P. Joy, Changes in hypothalamic catecholamines, dopamine β-hydroxylase and phenylethanolamine-N-methyltransferase in the catfish Heteropneustes fossilis in relation to season, raised photoperiod and temperature, ovariectomy and estradiol-17β replacement. Gen. Comp. Endocrinol. 97, 121–134 (1995)

    Article  PubMed  CAS  Google Scholar 

  19. P. Manickam, K.P. Joy, Changes in hypothalamic monoamine oxidase activity in relation to season, ovariectomy and 17β-estradiol administration in intact and ovariectomized catfish, Clarias batrachus (L.). Gen. Comp. Endocrinol. 75, 437–445 (1989)

    Article  PubMed  CAS  Google Scholar 

  20. B. Senthilkumaran, K.P. Joy, Effects of ovariectomy and oestradiol-replacement on hypothalamic serotonergic and monoamine oxidase activity in the catfish, Heteropneustes fossilis: A study correlating plasma oestradiol and gonadotropin levels. J. Endocrinol. 142, 193–203 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. V.L. Trudeau, B.D. Slolely, A.O.L. Wong, R.E. Peter, Interactions of gonadal steroids with brain dopamine and gonadotropin releasing hormone in the control of gonadotropin-II secretion in the goldfish. Gen. Comp. Endocrinol. 89, 39–50 (1993)

    Article  PubMed  CAS  Google Scholar 

  22. V.L. Trudeau, B.D. Slolely, R.E. Peter, Norepinephrine turnover in the goldfish brain is modulated by sex steroids and GABA. Brain Res. 624, 29–34 (1993)

    Article  PubMed  CAS  Google Scholar 

  23. K.P. Joy, B. Senthilkumaran, Annual and diurnal variations in and effects of altered photoperiod and temperature, ovariectomy and estradiol-17β replacement on catechol-O-methyltransferase activity in brain regions of catfish, Heteropneustes fossilis. Comp. Biochem. Physiol. 119, 37–44 (1998)

    CAS  Google Scholar 

  24. T. Nagatsu, M. Levitt, S. Udenfriend, Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J. Biol. Chem. 239, 2910 (1964)

    PubMed  CAS  Google Scholar 

  25. R. Chaube, K.P. Joy, Effects of altered photoperiod and temperature, serotonin-affecting drugs and melatonin on brain tyrosine hydroxylase activity in the female catfish Heteropneustes fossilis: a study correlating ovarian activity changes. J. Exp. Zool. 293, 585–593 (2002)

    Article  PubMed  CAS  Google Scholar 

  26. R. Chaube, K.P. Joy, Effects of ovariectomy and estradiol-17β replacement on brain tyrosine hydroxylase in the catfish Heteropneustes fossilis: changes in invivo activity and kinetic parameters. J. Endocrinol. 175, 329–342 (2002)

    Article  PubMed  CAS  Google Scholar 

  27. R. Chaube, K.P. Joy, Brain tyrosine hydroxylase in the catfish Heteropneustes fossilis: annual and circadian variations, and sex and regional differences in enzyme activity and some kinetic properties. Gen. Comp. Endocrinol. 30, 29–40 (2003)

    Article  Google Scholar 

  28. N.G. Bacopoulos, R.K. Bhatnagar, Correlation between tyrosine hydroxylase activity and catecholamine concentration and turnover in brain regions. J. Biochem. 29, 639–643 (1977)

    CAS  Google Scholar 

  29. J.C. Porter, Relationship of age, sex and reproductive status to the quantity of tyrosine hydroxylase in the median eminence and superior cervical ganglion of the rat. Endocrinology 118, 1426–1432 (1986)

    Article  PubMed  CAS  Google Scholar 

  30. A. Vetillard, T. Bailhache, B. Linard, C. Saligaut, O. Kah, P. Jego, Tyrosine hydroxylase expression in the preoptic area is regulated by a positive gonadal feedback in rainbow trout, in Proceedings of the 6th International Symposium on the Reproductive Physiology of Fish, ed. by B. Norberg, O.S. Kjesbu, G.L. Taranger, E. Andersson, S.O. Stefansson (Bergen Institute of Marine Research and University of Bergen, Bergen, 1999), pp. 4–9

    Google Scholar 

  31. B. Senthilkumaran, K.P. Joy, Effects of melatonin, p-cholrophenylalanine and α-methylparatyrosine on plasma gonadotropin level and ovarian activity in the catfish Heteropneustes fossilis: a study correlating changes in hypothalamic monoamines. Fish Physiol. Biochem. 97, 121–134 (1995)

    CAS  Google Scholar 

  32. B. Senthilkumaran, K.P. Joy, Effects of administration of some monoamine-synthesis blockers and precursors on ovariectomy-induced rise in plasma gonadotropin II in the catfish Heteropneustes fossilis. Gen. Comp. Endocrinol. 101, 220–226 (1996)

    Article  PubMed  CAS  Google Scholar 

  33. T. Yamauchi, H.A. Fujisawa, A simple and sensitive fluorometric assay for tyrosine hydroxylase. Anal. Biochem. 89, 143–150 (1978)

    Article  PubMed  CAS  Google Scholar 

  34. R. Shiman, M. Akino, S. Kaufman, Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J. Biol. Chem. 246, 1330–1340 (1971)

    PubMed  CAS  Google Scholar 

  35. O.H. Lowry, N.J. Rosenbrough, A.L. Farr, R.J. Randall, Protein measurement with folin–phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  CAS  Google Scholar 

  36. E.G. McGeer, P.L. McGeer, Some characteristics of brain tyrosine hydroxylase, in New Concepts in Neurotransmitter Regulation, ed. by A.J. Mandell (Plenum Press, New York, 1973), pp. 53–68

    Chapter  Google Scholar 

  37. C. Behl, Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci. 3, 433–442 (2002)

    PubMed  CAS  Google Scholar 

  38. Y. Hojo, T.A. Hattori, T. Enami, A. Furukawa, K. Suzuki, H.T. Ishii, H. Mukai, J.H. Morrison, W.G. Janssen, S. Kominami, N. Harada, T. Kimoto, S. Kawato, Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochrome P450 17α and P450 aromatase localised in neurons. Proc. Natl. Acad. Sci. USA 101, 865–870 (2003)

    Article  PubMed  Google Scholar 

  39. L.H. Zwain, S.S. Yen, Neurosteroidogenesis of astrocytes, oligodendrocytes and neurons of cerebral cortex of rat brain. Endocrinology 140, 3843–3852 (1999)

    Article  PubMed  CAS  Google Scholar 

  40. C.E. Roselli, L.E. Horton, J.A. Resko, Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 117, 2471–2477 (1985)

    Article  PubMed  CAS  Google Scholar 

  41. R. Chaube, K.P. Joy, In vitro brain tyrosine hydroxylase activation in the catfish Heteropneustes fossilis (Bloch). Seasonal changes in the involvement of cAMP-dependent protein kinase A and Ca2+-dependent protein kinase C. Indian J. Exp. Biol. 46, 764–769 (2008)

    PubMed  CAS  Google Scholar 

  42. P. Manickam, K.P. Joy, Changes in hypothalamic catecholamine levels in relation to season, ovariectomy and 17β-estradiol replacement in the ovariectomized catfish, Clarias batrachus (L.). Gen. Comp. Endocrinol. 80, 167–174 (1990)

    Article  PubMed  CAS  Google Scholar 

  43. C. Saligaut, D.-H. Garnier, S. Bennani, G. Salbert, T. Bailhache, P. Jego, Effects of estradiol on brain aminergic turnover of the female rainbow trout (Oncorhynchus mykiss) at the beginning of vitellogenesis. Gen. Comp. Endocrinol. 88, 209–216 (1992)

    Article  PubMed  CAS  Google Scholar 

  44. R. De Leeuw, H.J.Th. Goos, P.G.W.J. Van Oordt, The regulation of gonadotropin release by neurohormones and gonadal steroids in the African catfish Clarias gariepinus. Aquaculture 63, 43 (1987)

    Google Scholar 

Download references

Acknowledgement

R. Chaube thanks the CSIR, New Delhi for financial assistance.

Conflict of interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerikkattil P. Joy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaube, R., Joy, K.P. Estradiol-17β modulates dose-dependently hypothalamic tyrosine hydroxylase activity inhibited by α-methylparatyrosine in the catfish Heteropneustes fossilis . Endocrine 40, 394–399 (2011). https://doi.org/10.1007/s12020-011-9543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9543-5

Keywords

Navigation