Skip to main content

Advertisement

Log in

Pituitary resistance to thyroid hormones: pathophysiology and therapeutic options

  • Mini-Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Thyroid hormone secretion suppresses the expression of thyroid stimulating hormone (TSH), both of which are strictly controlled by a negative feedback loop between the hypothalamus-pituitary and thyroid. Pituitary resistance to thyroid hormone (PRTH) is defined as resistance to the action of thyroid hormone that is more severe in the pituitary than at the peripheral tissue level. Although the molecular basis of PRTH is not well understood, the clinical issue mainly involves imbalance between the hypothalamus-pituitary and peripheral thyroid hormone responsivity, which may induce peripheral thyrotoxic phenomena. Here, we review the pathogenesis and molecular aspects of PRTH, present a single case with inappropriate TSH secretion suffering from thyrotoxicosis treated with PTU, and discuss the possible choice of therapeutic options to correct the imbalance of thyroid hormone responsivity in both the hypothalamus–pituitary and peripheral tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S. Refetoff, The syndrome of resistance to thyroid hormone. Endocr. Rev. 14, 348–399 (1993)

    PubMed  CAS  Google Scholar 

  2. M.C. Gershengorn, B.D. Weintraub, Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of “inappropriate secretion of TSH”. J. Clin. Invest. 56, 633–642 (1975)

    Article  PubMed  CAS  Google Scholar 

  3. R.E. Weiss, S. Refetoff, Resistance to thyroid hormone. Rev. Endocr. Metab. Disord. 1, 97–108 (2000)

    Article  PubMed  CAS  Google Scholar 

  4. S.Y. Cheng, J.L. Leonard, P.J. Davis, Molecular aspects of thyroid hormone actions. Endocr. Rev. 31, 139–170 (2010)

    Article  PubMed  CAS  Google Scholar 

  5. T. Tagami, T. Usui, A. Shimatsu, M. Beniko, H. Yamamoto, K. Moriyama, M. Naruse, Aberrant expression of thyroid hormone receptor β isoform may cause inappropriate secretion of TSH in a TSH-secreting pituitary adenoma. J. Clin. Endocrinol. Metab. 96, 948–952 (2011)

    Article  Google Scholar 

  6. M.I. Chiamolera, F.E. Wondisford, Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 150, 1091–1096 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. E.D. Abel, H.C. Kaulbach, A. Campos-Barros, R.S. Ahima, M.E. Boers, K. Hashimoto, D. Forrest, F.E. Wondisford, Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotorphin. J. Clin. Invest. 103, 271–279 (1999)

    Article  PubMed  CAS  Google Scholar 

  8. E. Mihály, C. Fekete, G. Légrádi, R.M. Lechan, Hypothalamic dorsomedial nucleus neurons innervate thyrotorpin-releasing hormone-synthesizing neurons in the paraventricular nucleus. Brain Res. 891, 20–31 (2001)

    Article  PubMed  Google Scholar 

  9. S. Lee, B.M. Young, W. Wan, I.H. Chan, M.L. Privalsky, A mechanism for pituitary-resistance to thyroid hormone (PRTH) syndrome: a loss in cooperative coactivator contacts by thyroid hormone receptor (TR)β2. J. Mol. Endocrinol. 25, 1111–1125 (2011)

    Article  CAS  Google Scholar 

  10. A.M. Dumitrescu, X.H. Liao, T.B. Best, K. Brockmann, S. Refetoff, A novel syndrome combing thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Human Genet. 74, 168–175 (2004)

    Article  CAS  Google Scholar 

  11. M. Trajkovitc, T.J. Visser, J. Mittag, S. Horn, J. Lukas, V.M. Darras, G. Raivich, K. Bauer, H. Heuer, Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J. Clin. Invest. 117, 627–635 (2007)

    Article  Google Scholar 

  12. H.M. Tu, S.W. Kim, D. Salvatore, T. Bartha, G. Legradi, P.R. Larsen, R.M. Lechan, Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138, 3359–3368 (1997)

    Article  PubMed  CAS  Google Scholar 

  13. R.P. Peeters, A.W. van den Beld, H. Attalki, H. Toor, Y.B. de Rijke, G.G. Kuiper, S.W. Lamberts, J.A. Janssen, A.G. Uitterlinden, T.J. Visser, A new polymorphism in the type II deiodinase gene is associated with circulating thyroid hormone parameters. AM. J. Physiol. Endocrinol. Metab. 289, E75–E81 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. M.J. Schneider, S.N. Fiering, S.E. Pallud, A.F. Parlow, D.L. Germain, V.A. Galton, Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 5, 2137–2148 (2001)

    Article  Google Scholar 

  15. JSNP database http://snp.ims.u-tokyo.ac.jp

  16. H.G. Sorensen, W.M. van der Deure, P.S. Hansen, R.P. Peeters, M.M. Breteler, K.O. Kyvik, T.I. Sorensen, L. Hegedus, T.J. Visser, Identification and consequences of polymorphisms in the thyroid hormone receptor alpha and beta genes. Thyroid 18, 1087–1094 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. P. Beck-Peccoz, L. Persani, D. Calebiro, M. Bonomi, D. Mannavola, I. Campi, Syndromes of hormone resistance in the hypothalamic-pituitary-thyroid axis. Best. Pract. Res. Clin. Endocrinol. Metab. 20, 529–546 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. P. Beck-Peccoz, G. Piscatelli, M.G. Cattaneo, G. Faglia, Successful treatment of hyperthyroidism due to non-neoplastic pituitary TSH hyperthyroidism with 3, 5, 37-triiodothyroacetic acid (TRIAC). J. Endocrinol. Invest. 6, 217–223 (1983)

    PubMed  CAS  Google Scholar 

  19. J.M. Kunitake, N. Hartman, L.C. Henson, J. Lieberman, D.E. Williams, M. Wong, J.M. Hershman, 3, 5, 3’-triiodothyroacetic acid therapy for thyroid hormone resistance. J. Clin. Endocrinol. Metab. 69, 461–466 (1989)

    Article  PubMed  CAS  Google Scholar 

  20. M. Aquilar Diosdado, L. Escobar-Jimenez, M.L. Fermenez Soto, A. Garcia Curie, F. Escobar-Jimenez, Hyperthyroidism due to familial pituitary resistance to thyroid hormone: successful control with 3, 5, 3’triiodothyroacetic associated to propranolol. J. Endocrinol. Invest. 14, 663–668 (1991)

    Google Scholar 

  21. P.A. Schueler, H.L. Schwartz, K.A. Strait, C.N. Mariash, J.H. Oppenheimer, Binding of 3, 5, 3’-triiodothyronine (T3) and its analogs to the in vitro translational products of c-erbA protooncogenes: differences in the affinity of the α- and β-forms for the acetic acid analog and failure of the human testis and kidney α-2 products to bind T3. Mol. Endocrinol. 4, 227–234 (1990)

    Article  PubMed  CAS  Google Scholar 

  22. T. Takeda, S. Suzuki, R.T. Liu, L.J. DeGroot, Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 80, 2033–2040 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. F. Darendeliler, F. Bas, Successful therapy with 3, 5, 3’-triiodothyroacetic acid (TRIAC) in pituitary resistance to thyroid hormone. J. Pediatr. Endocrinol. Metab. 10, 535–538 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. G. Radetti, L. Persani, G. Molinaro, D. Mannavola, D. Corteiazzi, V.K. Chaterjee, P. Beck-Peccoz, Clinical and hormonal outcome after two years of triiodothyroacetic acid treatment in a child with thyroid hormone resistance. Thyroid 7, 775–778 (1997)

    Article  PubMed  CAS  Google Scholar 

  25. D.R. Bajorunas, W. Rosner, I.A. Kourides, Use of bromocriptine in a patient with generalized resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 58, 731–735 (1984)

    Article  PubMed  CAS  Google Scholar 

  26. P.I. Salmela, L. Wilde, H. Juustila, A. Ruokonèn, Effects of thyroid hormones (T4, T3), bromocriptine, and TRIAC on inappropriate TSH hypersecretion. Clin. Endocrinol. 28, 497–507 (1988)

    Article  CAS  Google Scholar 

  27. A.J. Dulgeroff, M.E. Geffner, S.N. Koyal, M. Wong, J.M. Hershman, Bromocriptine and Triac therapy for hyperthyroidism due to pituitary resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 75, 1071–1075 (1992)

    Article  PubMed  CAS  Google Scholar 

  28. P. Hamon, M. Bovier-Lapierre, M. Robert, D. Peynaud, M. Pugeat, J. Orgiazzi, Hyperthyroidism due to selective pituitary resistance to thyroid hormones in a 15-month-old boy: efficacy of D-thyroxine therapy. J. Clin. Endocrinol. Metab. 67, 1089–1093 (1988)

    Article  PubMed  CAS  Google Scholar 

  29. F. Dorey, G. Strauch, J.P. Gayno, Thyrotoxicosis due to pituitary resistance to thyroid hormones. Successful control with D thyroxine: a study in three patients. Clin. Endocrinol. 32, 221–228 (1990)

    Article  CAS  Google Scholar 

  30. I.D. Schwartz, B.B. Bercu, Dextrothyroxine in the treatment of generalized thyroid hormone resistance in a boy homozygous for a defect in the T3 receptor. Thyroid 2, 15–19 (1992)

    Article  PubMed  CAS  Google Scholar 

  31. J. Pohlenz, D. Knöbl, Treatment of pituitary resistance to thyroid hormone (PRTH) in an 8-year-old boy. Acta Paediatr. 85, 387–390 (1996)

    Article  PubMed  CAS  Google Scholar 

  32. B. Hamon, P. Hamon, M. Bovier-Lapierre, M. Pugeat, F. Savagner, P. Rodien, J. Orgiazzi, A child with resistance to thyroid hormone without thyroid hormone receptor gene mutation: a 20-year follow-up. Thyroid 18, 35–44 (2008)

    Article  PubMed  CAS  Google Scholar 

  33. T. Guran, S. Turan, R. Bircan, A. Bereket, 9 years follow-up of a patient with pituitary resistance to thyroid hormones (PRTH): comparison of two treatment periods of D-thyroxine and triiodothyroacetic acid (TRIAC). J. Pediatr. Endocrinol. Metab. 22, 971–978 (2009)

    Article  PubMed  CAS  Google Scholar 

  34. S. Refetoff, Resistance to thyroid hormone: one of several defects causing reduced sensitivity to thyroid hormone. Nat. Clin. Pract. Endocrinol. Metab. 93, 605–610 (2008)

    Google Scholar 

  35. J. Bernal, Thyroid hormone resistance syndrome. Endocrinol. Nutr. 58, 185–196 (2011)

    PubMed  CAS  Google Scholar 

  36. T.J. Visser, M.M. Kaplan, J.L. Leonard, P.R. Larsen, Evidence for two pathways of iodothyronine 5’-deiodination in rat pituitary that differ in kinetics, propylthiouracil sensitivity, and response to hypothyroidism. J. Clin. Invest. 71, 992–1002 (1983)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest that could be perceived as prejudicing the impartiality of the research reported.

Disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, S., Shigematsu, S., Inaba, H. et al. Pituitary resistance to thyroid hormones: pathophysiology and therapeutic options. Endocrine 40, 366–371 (2011). https://doi.org/10.1007/s12020-011-9538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9538-2

Keywords

Navigation