Skip to main content

Advertisement

Log in

Evaluation of oxidative status in patients with hyperthyroidism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Data on the antioxidant levels enzyme in patients with hyperthyroidism are limited and conflicting. Therefore, the objective of this study was to evaluate the oxidative status using an automated method in patients with hyperthyroidism. Thirty-six subjects with hyperthyroidism and 30 healthy controls were enrolled in this study. Serum oxidative status was determined via measurement of total antioxidant capacity (TAC) and total oxidant status (TOS) and calculation of oxidative stress index (OSI). Serum TAC levels were significantly lower in patients with hyperthyroidism than controls (P = 0.002), while serum TOS levels and OSI values were significantly higher (P = 0.008, 0.004; respectively). Serum TAC levels were correlated with TSH levels (rho = 0.223, P = 0.032), FT3 levels (rho = −0.434, P = 0.002) and FT4 levels (rho = −0.363, P = 0.003) in patients. Further, TOS levels and OSI values were correlated with TSH levels (rho = −0.245, P = 0.037; rho = −0.312, P = 0.011, respectively), FT3 levels (rho = 0.293, P = 0.017, rho = 0.505, P = 0.002, respectively), and FT4 levels (rho = 0.302, P = 0.006, rho = 0.321, P = 0.008, respectively) in patients. Duration of disease was significantly correlated with OSI values in patients (rho = 0.420, P = 0.011), while no correlation with serum TAC levels and TOS levels (P > 0.05). Oxidants are increased and antioxidants are decreased in patients with hyperthyroidism; as a result, the oxidative–antioxidative balance is shifted to the oxidative side. Increased oxidative stress may play a role in the pathogenesis of hyperthyroidism. It is believed that supplementation of antioxidant vitamins such as vitamins C and E may be helpful for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kundu, M. Pramanik, S. Roy, J. De, A. Biswas, A.K. Ray, Maintenance of brain thyroid hormone level during peripheral hypothyroid condition in adult rat. Life Sci. 79, 1450–1455 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. F. Goglia, E. Silvetri, A. Lanni, Thyroid hormones and mitocondria. Biosci. Rep. 22, 17–32 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. A.P. Weetman, N. Tandon, B.P. Morgan, Antithyroid drugs and release of inflammatory mediators by complement-attacked thyroid cells. Lancet 340, 633–636 (1992)

    Article  PubMed  CAS  Google Scholar 

  4. P. Venditti, D. De Leo, S.I. Meo, Vitamin E administration attenuates the triiodothyronine-induced modification of heart electrical activity in the rat. J. Exp. Biol. 200, 909–914 (1997)

    PubMed  CAS  Google Scholar 

  5. P. Venditti, S. Di Meo, Thyroid hormone-induced oxidative stress. Cell. Mol. Life Sci. 63, 414–434 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. M. Messarah, M.S. Boulakoud, A. Boumendjel, C. Abdennour, A. El Feki, The impact of thyroid activity variations on some oxidizing-stress parameters in rats. C. R. Biol. 330, 107–112 (2007)

    Article  PubMed  CAS  Google Scholar 

  7. B. Chance, H. Sies, A. Boveris, Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979)

    PubMed  CAS  Google Scholar 

  8. R.F. Castitho, A.J. Kowaltowski, A.E. Vercesi, 3,5,3-Triodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Arch. Biochem. Biophys. 345, 151–157 (1998)

    Article  Google Scholar 

  9. V. Fernandez, X. Barrientos, K. Kiperos, A. Valenzuela, L.A. Videla, Superoxide radical generation, NADPH oxidase activity and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation. Endocrinology 117, 496–501 (1985)

    Article  PubMed  CAS  Google Scholar 

  10. K. Asayama, K. Dobashi, H. Hayashibe, Y. Megata, K. Kato, Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology 121(6), 2112–2118 (1987)

    Article  PubMed  CAS  Google Scholar 

  11. S. Civelek, O. Seymen, A. Seven, G. Yigit, H. Hatemi, G.J. Burcak, Oxidative stress in heart tissue of hyperthyroid and iron supplemented rats. Toxicol. Environ. Health A 64, 499–506 (2001)

    Article  CAS  Google Scholar 

  12. J.A. Buege, S.D. Aust, Microsomal lipid peroxidation. Methods Enzymol. 52, 302–310 (1978)

    Article  PubMed  CAS  Google Scholar 

  13. E. Beutler, O. Duron, B.M. Kelly, Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888 (1963)

    PubMed  CAS  Google Scholar 

  14. D.E. Paglia, W.N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169 (1967)

    PubMed  CAS  Google Scholar 

  15. V. Fairbanks, G.G. Klee, Biochmical aspects of hematology, in Texbook of Clinical Chermistry, ed. by W. Tietz Norbert (WB Saunders, Philadelphia, 1996), pp. 1532–1534

    Google Scholar 

  16. B. Halliwell, Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721–724 (1994)

    Article  PubMed  CAS  Google Scholar 

  17. K. Asayama, K. Kato, Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic. Biol. Med. 8(3), 293–303 (1990)

    Article  PubMed  CAS  Google Scholar 

  18. B. Pereira, L.F. Rosa, D.A. Safi, E.J. Bechara, R. Curi, Control of superoxide dismutase, catalase and glutathione peroxidase activities in rat lymphoid organs by thyroid hormones. J. Endocrinol. 140(1), 73–77 (1994)

    Article  PubMed  CAS  Google Scholar 

  19. Y. Sun, L.W. Oberley, Y. Li, A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34(3), 497–500 (1988)

    PubMed  CAS  Google Scholar 

  20. P. Morini, E. Casalino, C. Sblano, C. Landriscina, The response of rat liver lipid peroxidation, antioxidant enzyme activities and glutathione concentration to the thyroid hormone. Int. J. Biochem. 23(10), 1025–1030 (1991)

    Article  PubMed  CAS  Google Scholar 

  21. O. Erel, A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 37, 277–285 (2004)

    Article  PubMed  CAS  Google Scholar 

  22. O. Erel, A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 37, 112–119 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. O. Erel, A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38, 1103–1111 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. C. Bolukbas, F.F. Bolukbas, M. Horoz, M. Aslan, H. Celik, O. Erel, Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect. Dis. 5, 95 (2005)

    Article  PubMed  Google Scholar 

  25. D.D. Wayner, G.W. Burton, K.U. Ingold, L.R. Barclay, S.J. Locke, The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim. Biophys. Acta 924, 408–419 (1987)

    PubMed  CAS  Google Scholar 

  26. K. Asayama, K. Dobashi, H. Hayashibe, K. Kato, Effects of beta-adrenergic blockers with different ancillary properties on lipid peroxidation in hyperthyroid rat cardiac muscle. Endocrinol. Jpn. 36(5), 687–694 (1989)

    Article  PubMed  CAS  Google Scholar 

  27. V. Fernandez, S. Llesuy, L. Solari, K. Kipreos, L.A. Videla, A. Boveris, Chemiluminescent and respiratory responses related to thyroid hormone-induced liver oxidative stress. Free. Radic. Res. Commun. 5(2), 77–84 (1988)

    Article  PubMed  CAS  Google Scholar 

  28. K. Komosinska-Vassev, K. Olczyk, E.J. Kucharz, C. Marcisz, K. Winsz-Szczotka, A. Kotulska, Free radical activity and antioxidant defence mechanisms in patients with hyperthyroidism due to Graves’ disease during therapy. Clin. Chim. Acta 300, 107–117 (2000)

    Article  PubMed  CAS  Google Scholar 

  29. R. Wilson, M. Chopra, H. Bradley, J.H. Mckillop, W.E. Smith, J.A. Thomson, Free radicals and Graves’ disease: the effect of therapy. Clin. Endocrinol. 30, 429–433 (1989)

    Article  CAS  Google Scholar 

  30. A.P. Bozhko, I.V. Gorodetskaia, A.P. Solodkov, Restriction of stress-induced activation of lipid peroxidation by small doses of thyroid hormones. Biull. Eksp. Biol. Med. 109, 539–541 (1990)

    Article  PubMed  CAS  Google Scholar 

  31. P. Venditti, M. Balestrieri, S. Di Meo, T. De Leo, Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J. Endocrinol. 155, 151–157 (1997)

    Article  PubMed  CAS  Google Scholar 

  32. M. Faure, E.A. Lissi, L.A. Videla, Evaluation of the antioxidant properties of thyroid hormones and propylthiouracil in the brain-homogenate autoxidation system and in the free radical-mediated oxidation of erythrocyte membranes. Chem. Biol. Interact. 77, 173–185 (1991)

    Article  PubMed  CAS  Google Scholar 

  33. L. Dumitriu, R. Bartoc, H. Ursu, Significance of high levels of serum malonyl dialdehyde (MDA) and ceruloplasmin (CP) in hyper- and hypothyroidism. Endocrinologie 26, 35–38 (1988)

    PubMed  CAS  Google Scholar 

  34. V.V. Iangolenko, A.N. Okorokov, Blood levels of medium molecular weight peptides and lipid peroxidation activity in the differential diagnosis of diffuse toxic guatr. Probl. Endokrinol (Mosk) 37, 10–12 (1991)

    CAS  Google Scholar 

  35. N.J. Miller, C. Rice-Evans, M.J. Davies, V. Gopinathan, A. Milner, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond) 84, 407–412 (1993)

    CAS  Google Scholar 

  36. K. Schlesier, M. Harwat, V. Bohm, R. Bitsch, Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 36, 177–187 (2002)

    Article  PubMed  CAS  Google Scholar 

  37. A. Janaszewska, G. Bartosz, Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scand. J. Clin. Lab. Invest. 62, 231–236 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. R.L. Prior, G. Cao, In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic. Biol. Med. 27, 1173–1181 (1999)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank staffs of Harran University Clinical Biochemistry for their generous friendly assistance in every step of this study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Aslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, M., Cosar, N., Celik, H. et al. Evaluation of oxidative status in patients with hyperthyroidism. Endocrine 40, 285–289 (2011). https://doi.org/10.1007/s12020-011-9472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9472-3

Keywords

Navigation