Skip to main content
Log in

Oxidative DNA damage: the thyroid hormone-mediated effects of insulin on liver tissue

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Thyroid hormone affects glucose homeostasis with its actions between the skeletal muscle and liver and the altered oxidative and non-oxidative glucose metabolism. In our study three chemicals are considered biomarkers associated with oxidative stress for protein modifications were measured; 8-hydroxy-2-deoxyyguanosine (8-OHdG), a major lesion that can be generated by reactive oxygen species for DNA damage, protein carbonyl content (PCO), products of protein oxidation and advanced oxidation protein products (AOPPs) a dithyrosine containing cross-linked protein products. The purpose of the recent study was to determine the effects of insulin and T4 or their combination in diabetic, thyroidectomized, or diabetic-thyroidectomized rats and possible relations with oxidative DNA and protein damages. For this purpose, rats were assigned to eight groups: Group 1; control, Group 2; diabetes, Group 3; diabetes + insulin, Group 4; surgically thyroidectomized control, Group 5; thyroidectomized + diabetes, Group 6; thyroidectomized + diabetes + insulin, Group 7; thyroidectomized + diabetes + insulin + thyroid hormone, levothyroxin sodium, 2.5 μg/kg and Group 8; thyroidectomized + diabetes + insulin + thyroid hormone, levothyroxin sodium, 5.0 μg/kg for 5 weeks. After the genomic DNA of liver tissues was extracted, the ratio of 8-OHdG to deoxyguanosine and liver tissue protein oxidation markers was determined. The main findings of our recent study were the increased 8-OHdG levels during the diabetes, hypothyroidism, and hypothyroidism with diabetes, which can be regulated in different percentages with the treatment of 2.5 and 5.0 μg/kg doses of thyroid hormone and the altered protein carbonyl and AOPP levels of liver tissue. Consequently, it was observed that the DNA and protein damage induced by oxidative stress in diabetes could be regulated by dose-dependent thyroid hormone-mediated effects to insulin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Bukan, B. Sancak, O. Yavuz, C. Koca, F. Tutkun, A.T. Ozcelikay, N. Altan, Lipid peroxidation and scavenging enzyme levels in the liver of streptozotocin-induced diabetic rats. Indian J. Biochem. Biophys. 40, 447–450 (2003)

    CAS  Google Scholar 

  2. N. Altan, C.O. Ongun, E. Hasanoğlu, A. Engin, C. Tuncer, S. Sindel, Effect of the sulfonylurea glyburide on superoxide dismutase activity in alloxan-induced diabetic rat hepatocytes. Diabetes Res. Clin. Pract. 22, 95–98 (1994)

    Article  CAS  PubMed  Google Scholar 

  3. T. Finkel, N.J. Holbrook, Oxidants, oxidative stress and the biology of aging. Nature 408, 239–247 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. A. Valavanidis, T. Vlachogianni, C. Fiotakis, 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health. 27, 120–139 (2009)

    Article  CAS  Google Scholar 

  5. M. Chevion, E. Berenshtein, E.R. Stadtman, Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic. Res. 33, 99–108 (2000)

    Google Scholar 

  6. R.S. Sohal, S. Agarwal, A. Dubey, W.C. Orr, Protein oxidative damage is associated with life expectancy of houseflies. Proc. Natl. Acad. Sci. 90, 7255–7259 (1993)

    Article  CAS  PubMed  Google Scholar 

  7. C.J.J. Alderman, S. Shah, J.C. Foreman, B.M. Chain, D.R. Katz, The role of advanced oxidation protein products in regulation of dendritic cell function. Free Radic. Biol. Med. 32, 377–385 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. V. Witko-Sarsat, M. Friedlander, C. Capeillere-Blandin, T. Nguyen-Khoa, A.T. Nguyen, J. Zingraff, P. Jungers, B. Descamps-Latscha, Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304–1313 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. O.H. Beenen, M. Pfaffendorf, P.A. Van Zwieten, Influence of the low thyroid state in diabetes mellitus on cardiac function and inotropic responsiveness to alpha 1-adrenoceptor stimulation: comparison with the role of hypothyroidism alone. J. Cardiovas. Pharamacol. 28, 553–557 (1996)

    Article  CAS  Google Scholar 

  10. F. Kosova, A. Sepici-Dincel, A. Engin, L. Memiş, C. Koca, N. Altan, The thyroid hormone mediated effects of insulin on serum leptin levels of diabetic rats. Endocrine 33, 317–322 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. M. Potenza, M.A. Via, R.T. Yanagisawa, Excess thyroid hormone and carbohydrate metabolism. Endocr. Pract. 15, 254–262 (2009)

    PubMed  Google Scholar 

  12. P.K. Maiti, A. Kar, Is triiodothyronine capable of ameliorating pyrethroidinduced thyroid dysfunction and lipid peroxidation? J. Appl. Toxicol. 18, 125–128 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. R.A. Floyd, J.J. Watson, P.K. Wong, D.H. Altmiller, R.C. Rickard, Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic. Res. Commun. 1, 163–172 (1986)

    Article  CAS  PubMed  Google Scholar 

  14. B. Halliwell, M. Dizdaroglu, The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radic. Res. Commun. 16, 75–87 (1992)

    Article  CAS  PubMed  Google Scholar 

  15. M.L. Hamilton, Z.M. Guo, C.D. Fuller, H. Van Remmen, W.F. Ward, S.N. Austad, D.A. Troyer, I. Thompson, A. Richardson, A reliable assessment of 8-oxo-2 deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res. 29, 2117–2126 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. R.L. Levine, J.A. Williams, E.R. Stadtman, E. Shacter, Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357 (1994)

    Article  CAS  PubMed  Google Scholar 

  17. M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17, 1195–1214 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. M.D. Evans, M.S. Cooke, Factors contributing to the outcome of oxidative damage to nucleic acids. BioEssays 26, 533–542 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. F. Erkoç, Ş. Erkoç, Structural and electronic properties of guanine and guanosine. J. Mol. Struct. (Theochem). 589–590, 405–411 (2002)

    Article  Google Scholar 

  20. C.S. Shin, B.S. Moon, K.S. Park, S.Y. Kim, S.J. Park, M.H. Chung, H.K. Lee, Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care 24, 733–737 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. J. Leinonen, T. Lehtimaki, S. Toyokuni, K. Okada, T. Tanaka, H. Hiai, H. Ochi, P. Laippala, V. Rantalaiho, O. Wirta, A. Pasternack, H. Alho, New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett. 417, 150–152 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. S. Del Guerra, R. Lupi, L. Marselli, M. Masini, M. Bugliani, S. Sbrana, S. Torri, M. Pollera, U. Boggi, F. Mosca, S. Del Prato, P. Marchetti, Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54, 727–735 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. R.H. Hsieh, L.M. Lien, S.H. Lin, C.W. Chen, H.J. Cheng, H.H. Cheng, Alleviation of oxidative damage in multiple tissues in rats with streptozotocin-induced diabetes by rice bran oil supplementation. Ann. N. Y. Acad. Sci. 1042, 365–371 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. S.R. Kim, E.S. Tull, E.O. Talbott, M.T. Vogt, L.H. Kuller, A hypothesis of synergism: the interrelationship of T3 and insulin to disturbances in metabolic homeostasis. Med. Hypotheses 59, 660–666 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. G. Andican, R. Gelisgen, S. Civelek, A. Seven, O. Seymen, T. Altug, G. Yigit, G. Burcak, Oxidative damage to nuclear DNA in hyperthyroid rat liver: inability of vitamin C to prevent the damage. J. Toxicol. Environ. Health A 67, 413–420 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. M. Lopez-Torres, M. Romero, G. Barja, Effect of thyroid hormones on mitochondrial oxygen free radical production and DNA oxidative damage in the rat heart. Mol. Cell. Endocrinol. 168, 127–134 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. C. Karasu, Y. Ozturk, N. Altan, N. Yildizoglu-Ari, C. Ikizler, V.M. Altan, Thyroid hormones mediated effect of insulin on alloxan diabetic rat atria. Gen. Pharmacol. 21, 735–740 (1990)

    CAS  PubMed  Google Scholar 

  28. C.D. Rodgers, E.G. Noble, A.W. Taylor, The effect of STZ-induced diabetes on serum triiodothyronine (T3) and thyroxine (T4) levels in the rat: a seven week time course. Diabetes Res. 26, 93–100 (1994)

    CAS  PubMed  Google Scholar 

  29. G. Alper, S. Irer, E. Duman, O. Caglayan, C. Yilmaz, Effect of I-deprenyl and gliclazide on oxidant stress/antioxidant status and DNA damage in a diabetic rat model. Endocr. Res. 31, 199–212 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. T. Etoh, T. Inoguchi, M. Kakimoto, N. Sonoda, K. Kobayashi, J. Kuroda, H. Sumimoto, H. Nawata, Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 46, 1428–1437 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. R. Pamplona, M. Portero-Otin, C. Ruiz, M.J. Bellmunt, J.R. Requena, S.R. Thorpe, J.W. Baynes, M. Romero, M. Lopez-Torres, G. Barja, Thyroid status modulates glycoxidative and lipoxidative modifications of tissue proteins. Free Radic. Biol. Med. 27, 901–910 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. E.R. Stadtman, Protein oxidation and aging. Free Radic. Res. 40, 1250–1258 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. R. Kayalı, U. Çakatay, Basic Mechanisms of Protein Oxidation (Protein Oksidasyonu Ana Mekanizmaları). Cerrahpaşa J. Med. 35, 83–89 (2004)

    Google Scholar 

  34. P. Gillery, Advanced glycation end products (AGEs), free radicals and diabetes. J. Soc. Biol. 195, 387–390 (2001)

    CAS  PubMed  Google Scholar 

  35. R.T. Dean, S. Fu, R. Stocker, M.J. Davies, Biochemistry and pathology of radical mediated protein oxidation. Biochem. J. 324, 1–18 (1997)

    CAS  PubMed  Google Scholar 

  36. U. Resch, G. Helsel, F. Tatzber, H. Sinzinger, Antioxidant status in thyroid dysfunction. Clin. Chem. Lab. Med. 40, 1132–1134 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. U. Cakatay, Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab. 31, 551–557 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowlegment

This study was supported by the Gazi University Project Foundation (BAP), Project No: 01-2006-07 and presented as poster in 20. National Biochemistry Congress, Kapadokya-Nevşehir, Türkiye, 29 October–1 November, 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilgün Altan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altan, N., Sepici-Dinçel, A., Şahin, D. et al. Oxidative DNA damage: the thyroid hormone-mediated effects of insulin on liver tissue. Endocr 38, 214–220 (2010). https://doi.org/10.1007/s12020-010-9376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9376-7

Keywords

Navigation