Skip to main content

Advertisement

Log in

p21-Activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Thymic carcinoid is an important component of the tumor spectrum causing Ectopic ACTH Syndrome (EAS) and usually carries a poor prognosis. Efforts have been focused on exploring the mechanism of the excessive ACTH production in non-pituitary tumors, whereas few studies have reported the molecular events underlying the tumor progression. In this study, seven patients with ACTH producing thymic carcinoids were enrolled. Of note is that five of them showed either lymph node metastasis, local invasion or distant metastasis. By using cDNA profiling approach, we evaluated the expression of cell adhesion pathway genes and found a remarkable overexpression of p21-activated kinase 3 (PAK3) in all thymic carcinoids which was further confirmed at both transcriptional and translational level. RAC1, an upstream activator of PAK3, was also overexpressed in thymic carcinoids. Overexpression of PAK3 in NIH3T3 cell enhanced cell migration and invasion. Importantly, we observed c-Jun NH2-terminal kinase (JNK) was activated in PAK3 transfected cells, and inhibition of JNK activity by SP600125, a JNK pathway inhibitor, abolished PAK3 mediated cell migration. Activation of JNK pathway was also detected in thymic carcinoid with high level of PAK3 expression. Our findings suggested a potential role of PAK3 in the progression of ACTH-producing thymic carcinoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.B. Baylin, G. Mendelsohn, Ectopic (inappropriate) hormone production by tumors: mechanisms involved and the biological and clinical implications. Endocr. Rev. 1, 45–77 (1980)

    Article  CAS  PubMed  Google Scholar 

  2. A.M. Isidori, A. Lenzi, Ectopic ACTH syndrome. Arq. Bras. Endocrinol. Metabol. 51, 1217–1225 (2007)

    PubMed  Google Scholar 

  3. W.Q. Wang, L. Ye, Y.F. Bi, H.Y. Zhao, S.Y. Sun, Z.Y. Tang, Y.J. Zhao, W.Q. Fang, Z.Y. Chen, K.M. Chen, X.L. Jin, G. Ning, Six cases of ectopic ACTH syndrome caused by thymic carcinoid. J. Endocrinol. Invest. 29, 293–297 (2006)

    CAS  PubMed  Google Scholar 

  4. Y.F. Bi, L. Ye, Y.H. Chen, G. Ning, S.Y. Sun, L. Jiang, N. Zhu, W.W. Zhou, W.Q. Wang, Characteristics of ectopic adrenocorticotropic hormone syndrome due to thymic carcinoid and analysis of the molecular mechanism. Chin. Med. J. 121, 667–670 (2008)

    CAS  PubMed  Google Scholar 

  5. I. Ilias, D.J. Torpy, K. Pacak, N. Mullen, R.A. Wesley, L.K. Nieman, Cushing’s syndrome due to ectopic corticotropin secretion: twenty years’ experience at the National Institutes of Health. J. Clin. Endocrinol. Metab. 90, 4955–4962 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. A.M. Isidori, G.A. Kaltsas, C. Pozza, V. Frajese, J. Newell-Price, R.H. Reznek, P.J. Jenkins, J.P. Monson, A.B. Grossman, G.M. Besser, The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up. J. Clin. Endocrinol. Metab. 91, 371–377 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. D.Y. Wang, D.B. Chang, S.H. Kuo, P.C. Yang, Y.C. Lee, H.C. Hsu, K.T. Luh, Carcinoid tumours of the thymus. Thorax 49, 357–360 (1994)

    Article  CAS  PubMed  Google Scholar 

  8. V.T. de Montpreville, P. Macchiarini, E. Dulmet, Thymic neuroendocrine carcinoma (carcinoid): a clinicopathologic study of fourteen cases. J. Thorac. Cardiovasc. Surg. 111, 134–141 (1996)

    Article  PubMed  Google Scholar 

  9. R.J. Rieker, S. Aulmann, R. Penzel, P.A. Schnabel, H. Blaeker, I. Esposito, A. Morresi-Hauf, H.F. Otto, E. Hecker, H. Dienemann, P. Schirmacher, G. Mechtersheimer, Chromosomal imbalances in sporadic neuroendocrine tumours of the thymus. Cancer Lett. 223, 169–174 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. B.T. Teh, J. Zedenius, S. Kytola, B. Skogseid, J. Trotter, H. Choplin, S. Twigg, F. Farnebo, S. Giraud, D. Cameron, B. Robinson, A. Calender, C. Larsson, P. Salmela, Thymic carcinoids in multiple endocrine neoplasia type 1. Ann. Surg. 228, 99–105 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. P.D. Leotlela, A. Jauch, H. Holtgreve-Grez, R.V. Thakker, Genetics of neuroendocrine and carcinoid tumours. Endocr. Relat. Cancer 10, 437–450 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. L. Ye, X. Li, X. Kong, W. Wang, Y. Bi, L. Hu, B. Cui, G. Ning, Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J. Endocrinol. 185, 337–343 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Y.F. Bi, R.X. Liu, L. Ye, H. Fang, X. Li, W. Wang, J. Zhang, K.K. Wang, L. Jiang, T. Su, Z.Y. Chen, G. Ning, Gene expression profiles of thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome reveal novel molecular mechanism. Endocr. Relat. Cancer 16, 1273–1282 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. E. Manser, C. Chong, Z.S. Zhao, T. Leung, G. Michael, C. Hall, L. Lim, Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 270, 25070–25078 (1995)

    Article  CAS  PubMed  Google Scholar 

  15. R. Kumar, A.E. Gururaj, C.J. Barnes, p21-Activated kinases in cancer. Nat. Rev. Cancer 6, 459–471 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. S. Balasenthil, A.A. Sahin, C.J. Barnes, R.A. Wang, R.G. Pestell, R.K. Vadlamudi, R. Kumar, p21-Activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem. 279, 1422–1428 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Y.P. Ching, V.Y. Leong, M.F. Lee, H.T. Xu, D.Y. Jin, I.O. Ng, P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res. 67, 3601–3608 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. V. Rousseau, O. Goupille, N. Morin, J.V. Barnier, A new constitutively active brain PAK3 isoform displays modified specificities toward Rac and Cdc42 GTPases. J. Biol. Chem. 278, 3912–3920 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. K.M. Allen, J.G. Gleeson, S. Bagrodia, M.W. Partington, J.C. MacMillan, R.A. Cerione, J.C. Mulley, C.A. Walsh, PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25–30 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. J. Meng, Y. Meng, A. Hanna, C. Janus, Z. Jia, Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J. Neurosci. 25, 6641–6650 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. J. Souopgui, M. Solter, T. Pieler, XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. EMBO J. 21, 6429–6439 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. K. Kageyama, S. Sakihara, T. Suda, Regulation and role of p21-activated kinase 3 by corticotropin-releasing factor in mouse pituitary. Regul. Pept. 152, 88–94 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. P. Kreis, E. Thevenot, V. Rousseau, B. Boda, D. Muller, J.V. Barnier, The p21-activated kinase 3 implicated in mental retardation regulates spine morphogenesis through a Cdc42-dependent pathway. J. Biol. Chem. 282, 21497–21506 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. R. Node-Langlois, D. Muller, B. Boda, Sequential implication of the mental retardation proteins ARHGEF6 and PAK3 in spine morphogenesis. J. Cell Sci. 119, 4986–4993 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. R.A. Wang, H. Zhang, S. Balasenthil, D. Medina, R. Kumar, PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25, 2931–2936 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. L. Adam, R. Vadlamudi, M. Mandal, J. Chernoff, R. Kumar, Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J. Biol. Chem. 275, 12041–12050 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. C. Greenman, P. Stephens, R. Smith, G.L. Dalgliesh, C. Hunter, G. Bignell, H. Davies, J. Teague, A. Butler, C. Stevens, S. Edkins, S. O’Meara, I. Vastrik, E.E. Schmidt, T. Avis, S. Barthorpe, G. Bhamra, G. Buck, B. Choudhury, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, A. Jenkinson, D. Jones, A. Menzies, T. Mironenko, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, D.P. Cahill, D.N. Louis, P. Goldstraw, A.G. Nicholson, F. Brasseur, L. Looijenga, B.L. Weber, Y.E. Chiew, A. DeFazio, M.F. Greaves, A.R. Green, P. Campbell, E. Birney, D.F. Easton, G. Chenevix-Trench, M.H. Tan, S.K. Khoo, B.T. Teh, S.T. Yuen, S.Y. Leung, R. Wooster, P.A. Futreal, M.R. Stratton, Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Asano, A. Jimenez-Dalmaroni, T.B. Liverpool, M.C. Marchetti, L. Giomi, A. Kiger, T. Duke, B. Baum, Pak3 inhibits local actin filament formation to regulate global cell polarity. HFSP J. 3, 194–203 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. I. Cobos, U. Borello, J.L. Rubenstein, Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54, 873–888 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. M.A. Sells, U.G. Knaus, S. Bagrodia, D.M. Ambrose, G.M. Bokoch, J. Chernoff, Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. A. Nayal, D.J. Webb, C.M. Brown, E.M. Schaefer, M. Vicente-Manzanares, A.R. Horwitz, Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J. Cell Biol. 173, 587–589 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. A. Obermeier, S. Ahmed, E. Manser, S.C. Yen, C. Hall, L. Lim, PAK promotes morphological changes by acting upstream of Rac. EMBO J. 17, 4328–4339 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. C.A. Moran, S. Suster, Neuroendocrine carcinomas (carcinoid tumor) of the thymus. A clinicopathologic analysis of 80 cases. Am. J. Clin. Pathol. 114, 100–110 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. C. Huang, K. Jacobson, M.D. Schaller, MAP kinases and cell migration. J. Cell Sci. 117, 4619–4628 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. C. Hofmann, M. Shepelev, J. Chernoff, The genetics of Pak. J. Cell Sci. 117, 4343–4354 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. S. Bagrodia, B. Derijard, R.J. Davis, R.A. Cerione, Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 270, 27995–27998 (1995)

    Article  CAS  PubMed  Google Scholar 

  37. C. Huang, Z. Rajfur, C. Borchers, M.D. Schaller, K. Jacobson, JNK phosphorylates paxillin and regulates cell migration. Nature 424, 219–223 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. H. Mi, N. Guo, A. Kejariwal, P.D. Thomas, PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 35, D247–D252 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. Gene Ontology Consortium, The Gene Ontology project in 2008. Nucleic Acids Res. 36, D440–444 (2008)

    Article  Google Scholar 

  40. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, M. Hattori, The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. K.D. Dahlquist, N. Salomonis, K. Vranizan, S.C. Lawlor, B.R. Conklin, GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31, 19–20 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995)

    Google Scholar 

  43. R. Rasmussen, Quantification on the LightCycler, in Rapid Cycle Real-time PCR, Methods and Applications, ed. by S. Meuer, C. Wittwer, K. Nakagawara (Springer, Heidelberg, 2001), pp. 21–34

    Google Scholar 

Download references

Acknowledgments

We greatly appreciate the patients for their cooperation in this study. This work was supported by the grants from the National Natural Science Foundation of China (No. 30725037, 30771018 and 30871203). The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Ning.

Additional information

Rui-xin Liu and Wei-qing Wang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Rx., Wang, Wq., Ye, L. et al. p21-Activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocr 38, 38–47 (2010). https://doi.org/10.1007/s12020-010-9324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9324-6

Keywords

Navigation