Abstract
Thymic carcinoid is an important component of the tumor spectrum causing Ectopic ACTH Syndrome (EAS) and usually carries a poor prognosis. Efforts have been focused on exploring the mechanism of the excessive ACTH production in non-pituitary tumors, whereas few studies have reported the molecular events underlying the tumor progression. In this study, seven patients with ACTH producing thymic carcinoids were enrolled. Of note is that five of them showed either lymph node metastasis, local invasion or distant metastasis. By using cDNA profiling approach, we evaluated the expression of cell adhesion pathway genes and found a remarkable overexpression of p21-activated kinase 3 (PAK3) in all thymic carcinoids which was further confirmed at both transcriptional and translational level. RAC1, an upstream activator of PAK3, was also overexpressed in thymic carcinoids. Overexpression of PAK3 in NIH3T3 cell enhanced cell migration and invasion. Importantly, we observed c-Jun NH2-terminal kinase (JNK) was activated in PAK3 transfected cells, and inhibition of JNK activity by SP600125, a JNK pathway inhibitor, abolished PAK3 mediated cell migration. Activation of JNK pathway was also detected in thymic carcinoid with high level of PAK3 expression. Our findings suggested a potential role of PAK3 in the progression of ACTH-producing thymic carcinoid.






Similar content being viewed by others
References
S.B. Baylin, G. Mendelsohn, Ectopic (inappropriate) hormone production by tumors: mechanisms involved and the biological and clinical implications. Endocr. Rev. 1, 45–77 (1980)
A.M. Isidori, A. Lenzi, Ectopic ACTH syndrome. Arq. Bras. Endocrinol. Metabol. 51, 1217–1225 (2007)
W.Q. Wang, L. Ye, Y.F. Bi, H.Y. Zhao, S.Y. Sun, Z.Y. Tang, Y.J. Zhao, W.Q. Fang, Z.Y. Chen, K.M. Chen, X.L. Jin, G. Ning, Six cases of ectopic ACTH syndrome caused by thymic carcinoid. J. Endocrinol. Invest. 29, 293–297 (2006)
Y.F. Bi, L. Ye, Y.H. Chen, G. Ning, S.Y. Sun, L. Jiang, N. Zhu, W.W. Zhou, W.Q. Wang, Characteristics of ectopic adrenocorticotropic hormone syndrome due to thymic carcinoid and analysis of the molecular mechanism. Chin. Med. J. 121, 667–670 (2008)
I. Ilias, D.J. Torpy, K. Pacak, N. Mullen, R.A. Wesley, L.K. Nieman, Cushing’s syndrome due to ectopic corticotropin secretion: twenty years’ experience at the National Institutes of Health. J. Clin. Endocrinol. Metab. 90, 4955–4962 (2005)
A.M. Isidori, G.A. Kaltsas, C. Pozza, V. Frajese, J. Newell-Price, R.H. Reznek, P.J. Jenkins, J.P. Monson, A.B. Grossman, G.M. Besser, The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up. J. Clin. Endocrinol. Metab. 91, 371–377 (2006)
D.Y. Wang, D.B. Chang, S.H. Kuo, P.C. Yang, Y.C. Lee, H.C. Hsu, K.T. Luh, Carcinoid tumours of the thymus. Thorax 49, 357–360 (1994)
V.T. de Montpreville, P. Macchiarini, E. Dulmet, Thymic neuroendocrine carcinoma (carcinoid): a clinicopathologic study of fourteen cases. J. Thorac. Cardiovasc. Surg. 111, 134–141 (1996)
R.J. Rieker, S. Aulmann, R. Penzel, P.A. Schnabel, H. Blaeker, I. Esposito, A. Morresi-Hauf, H.F. Otto, E. Hecker, H. Dienemann, P. Schirmacher, G. Mechtersheimer, Chromosomal imbalances in sporadic neuroendocrine tumours of the thymus. Cancer Lett. 223, 169–174 (2005)
B.T. Teh, J. Zedenius, S. Kytola, B. Skogseid, J. Trotter, H. Choplin, S. Twigg, F. Farnebo, S. Giraud, D. Cameron, B. Robinson, A. Calender, C. Larsson, P. Salmela, Thymic carcinoids in multiple endocrine neoplasia type 1. Ann. Surg. 228, 99–105 (1998)
P.D. Leotlela, A. Jauch, H. Holtgreve-Grez, R.V. Thakker, Genetics of neuroendocrine and carcinoid tumours. Endocr. Relat. Cancer 10, 437–450 (2003)
L. Ye, X. Li, X. Kong, W. Wang, Y. Bi, L. Hu, B. Cui, G. Ning, Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J. Endocrinol. 185, 337–343 (2005)
Y.F. Bi, R.X. Liu, L. Ye, H. Fang, X. Li, W. Wang, J. Zhang, K.K. Wang, L. Jiang, T. Su, Z.Y. Chen, G. Ning, Gene expression profiles of thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome reveal novel molecular mechanism. Endocr. Relat. Cancer 16, 1273–1282 (2009)
E. Manser, C. Chong, Z.S. Zhao, T. Leung, G. Michael, C. Hall, L. Lim, Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J. Biol. Chem. 270, 25070–25078 (1995)
R. Kumar, A.E. Gururaj, C.J. Barnes, p21-Activated kinases in cancer. Nat. Rev. Cancer 6, 459–471 (2006)
S. Balasenthil, A.A. Sahin, C.J. Barnes, R.A. Wang, R.G. Pestell, R.K. Vadlamudi, R. Kumar, p21-Activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem. 279, 1422–1428 (2004)
Y.P. Ching, V.Y. Leong, M.F. Lee, H.T. Xu, D.Y. Jin, I.O. Ng, P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res. 67, 3601–3608 (2007)
V. Rousseau, O. Goupille, N. Morin, J.V. Barnier, A new constitutively active brain PAK3 isoform displays modified specificities toward Rac and Cdc42 GTPases. J. Biol. Chem. 278, 3912–3920 (2003)
K.M. Allen, J.G. Gleeson, S. Bagrodia, M.W. Partington, J.C. MacMillan, R.A. Cerione, J.C. Mulley, C.A. Walsh, PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25–30 (1998)
J. Meng, Y. Meng, A. Hanna, C. Janus, Z. Jia, Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J. Neurosci. 25, 6641–6650 (2005)
J. Souopgui, M. Solter, T. Pieler, XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. EMBO J. 21, 6429–6439 (2002)
K. Kageyama, S. Sakihara, T. Suda, Regulation and role of p21-activated kinase 3 by corticotropin-releasing factor in mouse pituitary. Regul. Pept. 152, 88–94 (2009)
P. Kreis, E. Thevenot, V. Rousseau, B. Boda, D. Muller, J.V. Barnier, The p21-activated kinase 3 implicated in mental retardation regulates spine morphogenesis through a Cdc42-dependent pathway. J. Biol. Chem. 282, 21497–21506 (2007)
R. Node-Langlois, D. Muller, B. Boda, Sequential implication of the mental retardation proteins ARHGEF6 and PAK3 in spine morphogenesis. J. Cell Sci. 119, 4986–4993 (2006)
R.A. Wang, H. Zhang, S. Balasenthil, D. Medina, R. Kumar, PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25, 2931–2936 (2006)
L. Adam, R. Vadlamudi, M. Mandal, J. Chernoff, R. Kumar, Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J. Biol. Chem. 275, 12041–12050 (2000)
C. Greenman, P. Stephens, R. Smith, G.L. Dalgliesh, C. Hunter, G. Bignell, H. Davies, J. Teague, A. Butler, C. Stevens, S. Edkins, S. O’Meara, I. Vastrik, E.E. Schmidt, T. Avis, S. Barthorpe, G. Bhamra, G. Buck, B. Choudhury, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, A. Jenkinson, D. Jones, A. Menzies, T. Mironenko, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, D.P. Cahill, D.N. Louis, P. Goldstraw, A.G. Nicholson, F. Brasseur, L. Looijenga, B.L. Weber, Y.E. Chiew, A. DeFazio, M.F. Greaves, A.R. Green, P. Campbell, E. Birney, D.F. Easton, G. Chenevix-Trench, M.H. Tan, S.K. Khoo, B.T. Teh, S.T. Yuen, S.Y. Leung, R. Wooster, P.A. Futreal, M.R. Stratton, Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)
Y. Asano, A. Jimenez-Dalmaroni, T.B. Liverpool, M.C. Marchetti, L. Giomi, A. Kiger, T. Duke, B. Baum, Pak3 inhibits local actin filament formation to regulate global cell polarity. HFSP J. 3, 194–203 (2009)
I. Cobos, U. Borello, J.L. Rubenstein, Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54, 873–888 (2007)
M.A. Sells, U.G. Knaus, S. Bagrodia, D.M. Ambrose, G.M. Bokoch, J. Chernoff, Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997)
A. Nayal, D.J. Webb, C.M. Brown, E.M. Schaefer, M. Vicente-Manzanares, A.R. Horwitz, Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J. Cell Biol. 173, 587–589 (2006)
A. Obermeier, S. Ahmed, E. Manser, S.C. Yen, C. Hall, L. Lim, PAK promotes morphological changes by acting upstream of Rac. EMBO J. 17, 4328–4339 (1998)
C.A. Moran, S. Suster, Neuroendocrine carcinomas (carcinoid tumor) of the thymus. A clinicopathologic analysis of 80 cases. Am. J. Clin. Pathol. 114, 100–110 (2000)
C. Huang, K. Jacobson, M.D. Schaller, MAP kinases and cell migration. J. Cell Sci. 117, 4619–4628 (2004)
C. Hofmann, M. Shepelev, J. Chernoff, The genetics of Pak. J. Cell Sci. 117, 4343–4354 (2004)
S. Bagrodia, B. Derijard, R.J. Davis, R.A. Cerione, Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 270, 27995–27998 (1995)
C. Huang, Z. Rajfur, C. Borchers, M.D. Schaller, K. Jacobson, JNK phosphorylates paxillin and regulates cell migration. Nature 424, 219–223 (2003)
H. Mi, N. Guo, A. Kejariwal, P.D. Thomas, PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 35, D247–D252 (2007)
Gene Ontology Consortium, The Gene Ontology project in 2008. Nucleic Acids Res. 36, D440–444 (2008)
M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, M. Hattori, The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004)
K.D. Dahlquist, N. Salomonis, K. Vranizan, S.C. Lawlor, B.R. Conklin, GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31, 19–20 (2002)
Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995)
R. Rasmussen, Quantification on the LightCycler, in Rapid Cycle Real-time PCR, Methods and Applications, ed. by S. Meuer, C. Wittwer, K. Nakagawara (Springer, Heidelberg, 2001), pp. 21–34
Acknowledgments
We greatly appreciate the patients for their cooperation in this study. This work was supported by the grants from the National Natural Science Foundation of China (No. 30725037, 30771018 and 30871203). The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Rui-xin Liu and Wei-qing Wang contributed equally to this paper.
Rights and permissions
About this article
Cite this article
Liu, Rx., Wang, Wq., Ye, L. et al. p21-Activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocr 38, 38–47 (2010). https://doi.org/10.1007/s12020-010-9324-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12020-010-9324-6


