Skip to main content
Log in

Erythrocyte osmotic fragility and lipid peroxidation in experimental hyperthyroidism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

This study investigated the relation between erythrocyte osmotic fragility and oxidative stress and antioxidant state in primary hyperthyroidism induced experimental rats. Twenty-four Spraque–Dawley-type female rats weighing between 160 and 200 g were divided into two, as control (n = 10) and experimental (n = 12), groups. The experimental group animals have received tap water and L-Tiroksin (0.4 mg/100 g fodder) added standard fodder for 30 days to induce hyperthyroidism. Control group animals were fed tap water and standard fodder for the same period. Blood samples were drawn from the abdominal aorta of the rats under ether anesthesia. T3, T4, and TSH levels, osmotic fragility, malondialdehyde (MDA), superoxide dismutase, and glutathione levels were measured in the blood. There was a statistically significant deviation found in maximum and minimum osmotic hemolysis limit values of experimental group when compared to controls. The standard hemolytic increment curve of the hyperthyroid group shifted to the right when compared to control group’s curve. There was a statistically significant increase found in MDA and superoxide dismutase, but statistically a significant decrease was detected in glutathione levels in hyperthyroid group when compared to controls. As a result of our study, it may be concluded that hyperthyroidism may led to an increase in osmotic fragility of erythrocytes and this situation may possibly originate from the increased lipid peroxidation in hyperthyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H. Sies, in Oxidative Stress, ed. by H. Sies (Academic Press, Orlando, 1985)

    Google Scholar 

  2. B. Halliwell, Lancet 344(10), 721–724 (1994)

    Article  CAS  PubMed  Google Scholar 

  3. G. Van Ginkel, A. Sevanian, Methods Enzymol. 233, 273–288 (1994)

    Article  PubMed  Google Scholar 

  4. E. Brzezinska-Slebodzinska, Acta Vet. Hung. 49, 413–419 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. R.P.J. Hebbel, Lab. Clin. Med. 107, 401–404 (1986)

    CAS  Google Scholar 

  6. S.K. Jain, N. Mohandas, M.R. Clark, S.B. Shobel, Br. J. Haematol. 53, 247–252 (1983)

    Article  CAS  PubMed  Google Scholar 

  7. J.C. Debouzy, F. Fauvelle, H. Vezin, B. Brasme, Y. Chancerelle, Biochem. Pharmacol. 44, 1787–1793 (1992)

    Article  CAS  PubMed  Google Scholar 

  8. L. Mayer, Z. Romic, F. Skreb et al., Clin. Chem. Lab. Med. 42, 154–158 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. K. Asayama, K. Dobashi, H. Hayashibe, Y. Megata, K. Kato, Endocrinology 21, 2112–2118 (1987)

    Article  Google Scholar 

  10. T. Mano, R. Sinohara, Y. Sawai, N. Oda, Y. Nishida et al., J. Endocrinol. 147, 361–365 (1995)

    Article  CAS  PubMed  Google Scholar 

  11. R. Sinohara, T. Mano, A. Nagasaka, R. Hayashi, K. Uchimura, I. Nakano et al., J. Endocrinol. 164(1), 97–102 (2000)

    Article  Google Scholar 

  12. P. Venditti, M. Balestrieri, S. Di Meo, T. De Leo, J. Endocrinol. 155, 151–157 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. G. Andryskowski, T. Owczarek, Pol. Arch. Med. Wewn. 117(7), 285–289 (2007)

    CAS  PubMed  Google Scholar 

  14. L. Mayer, Z. Romic, F. Skreb et al., Clin. Chem. Lab. Med. 42, 154–158 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. R. Wilson, M. Chopra, H. Bradley et al., Clin. Endocrinol. 30, 429–433 (1989)

    Article  CAS  Google Scholar 

  16. A. Seven, E. Tasan, H. Hatemi et al., Acta Med. Okayama 53, 27–30 (1999)

    CAS  PubMed  Google Scholar 

  17. K. Komosinska-Vassev, K. Olczyk, E.J. Kucharz, C. Marcisz, K. Winsz-Sczotka, Clin. Chim. Acta 300, 107–117 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. P. Mascio, M.E. Murphy, H. Sies, Am. J. Clin. Nutr. 53, 194–200 (1991)

    Google Scholar 

  19. E. Ademoglu, N. Ozbey, Y. Erbil et al., Eur. J. Intern. Med. 17, 545–550 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. K. Kolanjiappan, K. Manoharan, Clin. Chim. Acta 326, 143–149 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. T. Devasena, S. Lalitha, K. Padma, Med. Sci. Res. 27, 843–846 (1999)

    CAS  Google Scholar 

  22. O.A. Levander, S.O. Welsu, Life Sci. 28, 147–151 (1981)

    Article  CAS  PubMed  Google Scholar 

  23. S. Ozdemir, R. Yücel, N. Dariyerli, S. Toplan, M.C. Akyolcu, G. Yigit, H. Hatemi, Endocrine 30(2), 203–205 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. J. Suess, D. Limenton, W. Dameshek, J.M.A. Dolloft, Blood 3, 1250–1303 (1954)

    Google Scholar 

  25. T.F. Slater, Methods Enzymol. 105, 283–293 (1984)

    Article  CAS  PubMed  Google Scholar 

  26. M.E. Anderson, in Enzymatic and Chemical Methods for Determination of Glutathione: Chemical, Biochemical and Medical Aspects, vol. A, ed. by D. Dolphin, R. Poulson, O. Avramovic (Wiley, New York, 1989)

    Google Scholar 

  27. C. Nebot, M. Moutet, P. Huet, J.Z. Xu, J.C. Yadan, J. Chaudiere, Anal. Biochem. 214, 442–451 (1993)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Özdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yücel, R., Özdemir, S., Darıyerli, N. et al. Erythrocyte osmotic fragility and lipid peroxidation in experimental hyperthyroidism. Endocr 36, 498–502 (2009). https://doi.org/10.1007/s12020-009-9251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-009-9251-6

Keywords

Navigation