Skip to main content

Advertisement

Log in

Expression of the electrogenic Na+–HCO3 -cotransporters NBCe1-A and NBCe1-B in rat pancreatic islet cells

  • Original Paper
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

It was recently proposed that, in rat pancreatic islets, the production of bicarbonate accounts for the major fraction of the carbon dioxide generated by the oxidative catabolism of nutrient insulin secretagogues. In search of the mechanism(s) supporting the membrane transport of bicarbonate, the possible role of the electrogenic Na+–HCO3 -cotransporters NBCe1-A and NBCe1-B in rat pancreatic islet cells was investigated. Expression of NBCe1-A and NBCe1-B in rat pancreatic islet cells was documented by RT-PCR, western blotting, and immunocytochemistry. The latter procedure suggested a preferential localization of NBCe1-B in insulin-producing cells. Tenidap (3–100 μM), previously proposed as an inhibitor of NBCe1-A-mediated cotransport in proximal tubule kidney cells, caused a concentration-related inhibition of glucose-stimulated insulin secretion. It also inhibited 2-ketoisocaproate-induced insulin release and to a relatively lesser extent, the secretory response to l-leucine. Tenidap (50–100 μM) also inhibited the metabolism of d-glucose in isolated islets, increased 22Na net uptake by dispersed islet cells, lowered intracellular pH and provoked hyperpolarization of plasma membrane in insulin-producing cells. This study thus reveals the expression of the electrogenic Na+–HCO3 -cotransporters NBCe1-A and NBCe1-B in rat pancreatic islet cells, and is consistent with the participation of such transporters in the process of nutrient-stimulated insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Sener, H. Jijakli, S. Zahedi Asl, P. Courtois, A.P. Yates, S. Meuris, L.C. Best, W.J. Malaisse, Am. J. Physiol. 292, E1624 (2007)

    CAS  Google Scholar 

  2. M.D. Parker, W.F. Boron, in Seldin and Giebisch’s the Kidney: Physiology and Pathophyiology, ed. by R.J. Alpern, S.C. Hebert (Elsevier Academic Press, Amsterdam, 2008), p. 1481

    Chapter  Google Scholar 

  3. W.F. Boron, E.L. Boulpaep, J. Gen. Physiol. 81, 53 (1983)

    Article  CAS  PubMed  Google Scholar 

  4. M.F. Romero, M.A. Hediger, E.L. Boulpaep, W.F. Boron, Nature 387, 409 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. M.F. Romero, P. Fong, U.V. Berger, M.A. Hediger, W.F. Boron, Am. J. Physiol. 274, F425 (1998)

    CAS  PubMed  Google Scholar 

  6. O. Ducoudret, A. Diakov, S. Müller-Berger, M.F. Romero, E. Frömter, Eur. J. Physiol. 442, 709 (2001)

    Article  CAS  Google Scholar 

  7. J. Bondeson, Gen. Pharmacol. 27, 943 (1996). 27

    CAS  PubMed  Google Scholar 

  8. H. Matsumoto, A. Fujii, J. Pharmacol. Exp. Ther. 300, 668 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. A. Sener, W.J. Malaisse, Diabete Metab 6, 97 (1980)

    CAS  PubMed  Google Scholar 

  10. W.J. Malaisse, K. Louchami, A. Sener, R. Beauwens, Diabetes 57(Suppl 1), A730 (2008)

    Google Scholar 

  11. K. Louchami, Y. Zhang, R. Beauwens, W.J. Malaisse, A. Sener, Endocrine 31, 1 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. A.C. Boschero, W.J. Malaisse, Arch. Int. Physiol. Biochim. 86, 479 (1978)

    Article  CAS  PubMed  Google Scholar 

  13. S. Kawazu, A.C. Boschero, W.J. Malaisse, Pflügers Arch. 375, 197 (1978)

    Article  CAS  PubMed  Google Scholar 

  14. J. Praetorius, Y.H. Kim, E.V. Bouzinova, S. Friesche, A. Rojek, C. Aalkaer, S. Nielsen, Am. J. Physiol. 286, F903 (2004)

    Article  CAS  Google Scholar 

  15. E. Roussa, W. Nastainczyk, F. Thévenod, Biochem. Biophys. Res. Commun. 314, 382 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. M.S. Soyfoo, C. De Vriese, H. Debaix, M.D. Martin-Martinez, C. Mathieu, O. Devuyst, S.D. Steinfeld, C. Delporte, Arthritis Rheum. 56, 2566 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. A. Brandes, O. Oehlke, A. Schümann, S. Heidrich, F. Thévenod, E. Roussa, Am. J. Physiol. 293, R2400 (2007)

    CAS  Google Scholar 

  18. S.M. Hsu, L. Raine, H. Fanger, J. Histochem. Cytochem. 29, 577 (1981)

    CAS  PubMed  Google Scholar 

  19. F. Malaisse-Lagae, W.J. Malaisse, in Methods in Diabetes Research, vol. I, ed. by J. Larner, S. Pohl (Wiley, New York, 1984), p. 174

    Google Scholar 

  20. W.J. Malaisse, A. Sener, Biochim. Biophys. Acta 971, 246 (1988)

    CAS  PubMed  Google Scholar 

  21. L. Best, A.C. Elliott, Mol. Cell. Endocrinol. 111, 191 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. W.J. Malaisse, C. Maggetto, V. Leclercq-Meyer, A. Sener, J. Clin. Invest. 91, 432 (1993)

    Article  CAS  PubMed  Google Scholar 

  23. M.-H. Giroix, E. Agascioglu, B. Oguzhan, K. Louchami, Y. Zhang, P. Courtois, W.J. Malaisse, A. Sener, Biochim. Biophys. Acta 1757, 773 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Y. Zhang, E. Hupkens, and C. Demesmaeker for scientific, technical, and secretarial help. This work was supported by grants from the Belgian Foundation for Scientific Medical Research (3.4520.07) and the Deutsche Forschungsgemeinschaft (F.T). M.S.S is recipient of a scholarship from the Erasme Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy J. Malaisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soyfoo, M.S., Bulur, N., Virreira, M. et al. Expression of the electrogenic Na+–HCO3 -cotransporters NBCe1-A and NBCe1-B in rat pancreatic islet cells. Endocr 35, 449–458 (2009). https://doi.org/10.1007/s12020-009-9175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-009-9175-1

Keywords

Navigation