Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats

Abstract

Circadian rhythmicity is affected in obese subjects. This article analyzes the effect of a high-fat diet (35% fat) on 24-h changes circulating prolactin, luteinizing hormone (LH), testosterone, corticosterone, thyroid-stimulating hormone (TSH) and glucose, and pineal melatonin content, in rats. When body weight of rats reached the values of morbid obesity, the animals were sacrificed at six different time intervals throughout a 24-h cycle, together with age-matched controls fed a normal diet (4% fat). Plasma hormone levels were measured by specific radioimmunoassays and glucose concentration by an automated glucose oxidase method. In rats under a high-fat diet, a significant disruption of the 24-h pattern of plasma TSH, LH, and testosterone and a slight disruption of prolactin rhythm were found. Additionally, high-fat fed rats showed significantly lower total values of plasma TSH and testosterone and absence of correlation between testosterone and circulating LH levels. Plasma corticosterone levels increased significantly in high-fat fed rats and their 24-h variation became blunted. In obese animals, a significant hyperglycemia developed, individual plasma glucose values correlating with circulating corticosterone in high-fat fed rats only. The amplitude of the nocturnal pineal melatonin peak decreased significantly in high-fat fed rats. The results underlie the significant effects that obesity has on circadian organization of hormone secretion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M.H. Hastings, A.B. Reddy, E.S. Maywood, Nat. Rev. Neurosci. 4, 649–661 (2003)

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    A.D. Laposky, J. Bass, A. Kohsaka, F.W. Turek, FEBS Lett. 582(1), 142–151 (2007)

    Article  PubMed  Google Scholar 

  3. 3.

    O. Froy, Front. Neuroendocrinol. 28, 61–71 (2007)

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    G.A. Bray, C.M. Champagne, J. Am. Diet. Assoc. 105, S17–S23 (2005)

    Article  PubMed  Google Scholar 

  5. 5.

    H. Yki-Jarvinen, Ann. Med. 37, 347–356 (2005)

    Article  PubMed  Google Scholar 

  6. 6.

    C.E. Greenwood, G. Winocur, Neurobiol. Aging 26(Suppl 1), 42–45 (2005)

    Article  PubMed  Google Scholar 

  7. 7.

    K. Uemura, N. Mori, Nagoya J. Med. Sci. 68, 109–114 (2006)

    PubMed  Google Scholar 

  8. 8.

    M.E. Cerf, Med. Sci. Monit. 13, RA12–RA17 (2007)

    CAS  PubMed  Google Scholar 

  9. 9.

    N. Davis, S. Katz, J. Wylie-Rosett, Cardiol. Rev. 15, 62–66 (2007)

    Article  PubMed  Google Scholar 

  10. 10.

    R. Buettner, J. Scholmerich, L.C. Bollheimer, Obesity (Silver Spring). 15, 798–808 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    G.S. Young, J.B. Kirkland, Appl. Physiol. Nutr. Metab. 32, 161–176 (2007)

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    H. Yanagihara, H. Ando, Y. Hayashi, Y. Obi, A. Fujimura, Chronobiol. Int. 23, 905–914 (2006)

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    D.A. Schoeller, Am. J. Clin. Nutr. 68, 956S–961S (1998)

    CAS  PubMed  Google Scholar 

  14. 14.

    H. Al Adsani, L.J. Hoffer, J.E. Silva, J. Clin. Endocrinol. Metab. 82, 1118–1125 (1997)

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    M. Krotkiewski, Int. J. Obes. Relat. Metab. Disord. 24(Suppl 2), S116–S119 (2000)

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    P. Kok, F. Roelfsema, M. Frolich, A.E. Meinders, H. Pijl, J. Clin. Endocrinol. Metab. 90, 6185–6191 (2005)

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    R.E. Mistlberger, Neurosci. Biobehav. Rev. 189, 171–195 (1994)

    Article  Google Scholar 

  18. 18.

    F. Chacon, P. Cano, V. Jimenez, D.P. Cardinali, A. Marcos, A.I. Esquifino, Chronobiol. Int. 21, 393–404 (2004)

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    A. Vegiopoulos, S. Herzig, Mol. Cell. Endocrinol. 275, 43–61 (2007)

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    J.T. Ho, J.B. Keogh, S.R. Bornstein, M. Ehrhart-Bornstein, J.G. Lewis, P.M. Clifton, D.J. Torpy, Horm. Metab. Res. 39, 694–699 (2007)

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    N. Mariss-Alarvy, A. Gaumont, A. Langlois, F. Dabertrand, M. Bouchecareilh, C. Tridon, P. Mormede, J. Endocrinol. 195, 473–484 (2007)

    CAS  Article  Google Scholar 

  22. 22.

    B.M. Tannenbaum, D.N. Brindley, G.S. Tannenbaum, M.F. Dallman, M.D. McArthur, M.J. Meaney, Am. J. Physiol. 273, E1168–E1177 (1997)

    CAS  PubMed  Google Scholar 

  23. 23.

    S.P. Tofovic, E.K. Jackson, Methods Mol. Med. 86, 29–46 (2003)

    CAS  PubMed  Google Scholar 

  24. 24.

    D. Chen, M.W. Wang, Diabetes Obes. Metab. 7, 307–317 (2005)

    Article  PubMed  Google Scholar 

  25. 25.

    P.M. Plotsky, K.V. Thrivikraman, A.G. Watts, R.L. Hauger, Endocrinology 130, 1931–1941 (1992)

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    C.J. Glueck, R.I. Levy, D.S. Fredrickson, Diabetes 18, 739–747 (1969)

    CAS  PubMed  Google Scholar 

  27. 27.

    G.M. Reaven, R.L. Lerner, M.P. Stern, J.W. Farquhar, J. Clin. Invest. 46, 1756–1767 (1967)

    CAS  PubMed  Google Scholar 

  28. 28.

    T.K. Jensen, A.M. Andersson, N. Jorgensen, A.G. Andersen, E. Carlsen, J.H. Petersen, N.E. Skakkebaek, Fertil. Steril. 82, 863–870 (2004)

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    S.J. Winters, C. Wang, E. Abdelrahaman, V. Hadeed, M.A. Dyky, A. Brufsky, J. Androl. 27, 560–564 (2006)

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    E. Sebokova, M.L. Garg, M.T. Clandinin, Am. J. Physiol. 254, E708–E712 (1988)

    CAS  PubMed  Google Scholar 

  31. 31.

    J. Gromadzka-Ostrowska, M. Przepiorka, K. Romanowicz, Reprod. Biol. 2, 277–293 (2002)

    PubMed  Google Scholar 

  32. 32.

    Z.H. Lu, Y.M. Mu, B.A. Wang, X.L. Li, J.M. Lu, J.Y. Li, C.Y. Pan, T. Yanase, H. Nawata, Biochem. Biophys. Res. Commun. 303, 1002–1007 (2003)

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    R.J. Elin, S.J. Winters, Clin. Lab. Med. 24, 119–139 (2004)

    Article  PubMed  Google Scholar 

  34. 34.

    N. Lima, H. Cavaliere, M. Knobel, A. Halpern, G. Medeiros-Neto, Int. J. Obes. Relat. Metab. Disord. 24, 1433–1437 (2000)

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    P.A. Daly, J.B. Young, L. Landsberg, Am. J. Physiol. 263, F586–F593 (1992)

    CAS  PubMed  Google Scholar 

  36. 36.

    J.W. Kiel, V.S. Bishop, Am. J. Physiol. 262, H1407–H1414 (1992)

    CAS  PubMed  Google Scholar 

  37. 37.

    A.G. Dulloo, J.B. Young, L. Landsberg, Am. J. Physiol. 255, E180–E188 (1988)

    CAS  PubMed  Google Scholar 

  38. 38.

    T.J. Bartness, G.E. Demas, C.K. Song, Exp. Biol. Med. (Maywood). 227, 363–376 (2002)

    CAS  Google Scholar 

  39. 39.

    M.A. Raskind, B.L. Burke, N.J. Crites, A.M. Tapp, D.D. Rasmussen, Neuropsychopharmacology 32, 284–288 (2007)

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    D.D. Rasmussen, D.R. Mitton, S.A. Larsen, S.M. Yellon, J. Pineal Res. 31, 89–94 (2001)

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    D.D. Rasmussen, B.M. Boldt, C.W. Wilkinson, S.M. Yellon, A.M. Matsumoto, Endocrinology 140, 1009–1012 (1999)

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    M.G. Ladizesky, V. Boggio, L.E. Albornoz, P. Castrillón, C.A. Mautalen, D.P. Cardinali, J. Pineal Res. 34, 143–151 (2003)

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    S. Sanchez-Mateos, C. Alonso-Gonzalez, A. Gonzalez, C.M. Martinez-Campa, M.D. Mediavilla, S. Cos, E.J. Sanchez-Barcelo, Maturitas 58, 91–101 (2007)

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    B. Prunet-Marcassus, M. Desbazeille, A. Bros, K. Louche, P. Delagrange, P. Renard, L. Casteilla, L. Penicaud, Endocrinology 144, 5347–5352 (2003)

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Y. Ishihara, C.L. White, H. Kageyama, A. Kageyama, D.A. York, G.A. Bray, Obes. Res. 12, 1067–1076 (2004)

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    V. Antic, B.N. Van Vliet, J.P. Montani, Auton. Neurosci. 90, 152–157 (2001)

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    J.F. Carroll, J.J. Thaden, A.M. Wright, T. Strange, Am J Hypertens. 18, 1320–1326 (2005)

    Article  PubMed  Google Scholar 

  48. 48.

    A.I. Esquifino, P. Castrillon, M. Garcia Bonacho, E. Vara, D.P. Cardinali, J. Pineal Res. 27, 15–23 (1999)

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    W. Nelson, Y.L. Tong, J.K. Lee, F. Halberg, Chronobiologia 6, 305–323 (1979)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from UCM/Danone and Fundación Rodríguez Pascual, Madrid Spain, Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 14087), and Universidad de Buenos Aires (ME 075). The gift of the reagents to measure pituitary hormone levels by the NIDDK’s National Hormone and Pituitary Program and Dr. A. Parlow (Harbor UCLA Medical Center,Torrance CA) is gratefully acknowledged. D.P.C. is a Research Career Awardee from the Argentine Research Council (CONICET).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana I. Esquifino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cano, P., Jiménez-Ortega, V., Larrad, Á. et al. Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocr 33, 118–125 (2008). https://doi.org/10.1007/s12020-008-9066-x

Download citation

Keywords

  • Circadian
  • High-fat diet
  • Obesity
  • Hyperglycemia
  • Melatonin
  • Prolactin