Skip to main content
Log in

Oxidant injury in coronary heart disease [Part-1]

  • Original Article
  • Published:
Comprehensive Therapy

Abstract

Oxidative stress damages the heart through a series of reactions begining with lipid peroxidation, the main process behind atherosclerosis. Antioxidant supplementation has some beneficial effects by binding with metal ions or catalysts to prevent oxidative lipid peroxidation and chain production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devaraj S, Jialal I. Oxidized low-density lipoprotein and atherosclerosis. Int J Clin La res. 1996;26:178–184.

    Article  CAS  Google Scholar 

  2. Addis PB, Carr TP, Hassel CA, Huang ZZ, Warner GJ. Atherogenic and anti-atherogenic factors in the human diet. Biochem Soc Symp. 1995;61:259–271.

    PubMed  CAS  Google Scholar 

  3. Oliver MF. Which changes in diet prevent coronary heart disease? A review of clinical trials of dietary fats and antioxidants. Acta Cardiol. 1996;51:467–490.

    PubMed  CAS  Google Scholar 

  4. Lugasi A, Blazovics A, Dworschk E, Feher J. [Cardio-protective effect of red wine as reflected in literature.] (Hungarian) Orv Hetil. 1997;138:673–678.

    PubMed  CAS  Google Scholar 

  5. Bast A, Haenen GR, Doelman CJ. Oxidants and anti-oxidants: state of the art. Am J Med. 1991;91(3C):2S-13S.

    Article  PubMed  CAS  Google Scholar 

  6. Novogrodsky A, Ravid A, Rubin AL, Stenzel KH. Hydroxyl radical scavengers inhibit lymphocytes mitogenesis. Proc Natl Acad Sci USA. 1982;79:1171–1174.

    Article  PubMed  CAS  Google Scholar 

  7. Konrad F, Schoenberg MH, Wiedmann H, Kilian J, Georgieff M. [The use of n-acetycycteine as an antioxidant and mucolytic agent in ventilated patients: a prospective randomized, placebo-controlled, double blind study.] (German) Anesthetist. 1995;44:651–658.

    Article  CAS  Google Scholar 

  8. Efremov AV, Belkina OM, Zykov AA. [The activity of antioxidants in serum of animals in experimental crush syndrome. (Russian). Byull Eksp Biol Med. 1992;113:598–599.

    CAS  Google Scholar 

  9. Duthie GD. Lipid peroxidation [Review]. Eur J Clin Nutr. 1993;47:759–764.

    PubMed  CAS  Google Scholar 

  10. Coudray C, Boucher F, Richard MJ, Arnaud J, DeLeiris J, Farier A. Zinc deficiency, ethanol, and myocardial ischemia effect lipoperoxidation. Biol Trace Elem Res. 1991;30:103–118.

    Article  PubMed  CAS  Google Scholar 

  11. Teramoto S, Uejima Y, Teramoto K, Ouchi Y, Fukuchi Y. Effect of an age on alteration of glutathione metabolism following smoke inhalation in mice. Lung. 1996;174:119–126.

    Article  PubMed  CAS  Google Scholar 

  12. Olinescu R, Radaceanu V, Nita S, Lupeanu E. Age dependent variations of the plasma peroxides and total antioxidants in women with obesity and hypothyroidism. Rom J Intern Med. 1992;30:285–290.

    PubMed  CAS  Google Scholar 

  13. Frol'kis RA, Voronkov GS, Dubur GIA, Tsiomik VA, Gomon IV. [Creatinine phopshokinase activit in myocardial sarcoplasmic reticulum membranes in experimental coronary insufficiency] (Russian). Biull Eksp Biol Med. 1983; 95:53–5.

    Article  PubMed  Google Scholar 

  14. Gressier B, Cabanis A, Lebegue S, et al. Comparison of in vitro effects of two thiol-containing drugs on human neutrophils hydrogen peroxide production. Meth Find Exp Clin Pharmacol. 1993;15:101–105.

    CAS  Google Scholar 

  15. Ferrari R, Ceconi C, Curello S, et al. Oxygen free radicals and myocardial damage: protective thiol containing agents. Am J Med. 1991;91:95S-105S.

    Article  PubMed  CAS  Google Scholar 

  16. Kemimura S, Geel K, Britton RS, Bacon BR, Triadefilopoulos G, Tsukamoto H. Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: association of lipid peroxidation with liver fibrogenesis. Hepatology. 1992;16:448–453.

    Article  Google Scholar 

  17. Ahlskog JE, Uitti RJ, Low PA, Tyce GM, O'Brien JF, Nickander KK. Levodopa and deprenyl treatment effects on perinatal indices of oxidant stress in Parkinson's disease. Neurology. 1996;46:796–801.

    PubMed  CAS  Google Scholar 

  18. Zarling EJ, Mobarhan S, Bowen P, Kamath S. Pulmonary pentane excretion increases with age in healthy subjects. Mech Ageing Dev. 1993;67:141–147.

    Article  PubMed  CAS  Google Scholar 

  19. Loeffler DA, Connor JR, Juneau PL, et al. Transferrin and iron in normal, Alzheimer's disease and Parkinson's disease brain regions. J Neurochem. 1995;65:710–716.

    Article  PubMed  CAS  Google Scholar 

  20. Lenz AG, Costabel U, Maier KL. Oxidized BAL fluid proteins in patients with interstitial lung disease. Eur Resp J. 1996;9:307–312.

    Article  CAS  Google Scholar 

  21. Diaz MN, Frei B, Vita JA, Keaney JF Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med., 1997;337:408–417.

    Article  PubMed  CAS  Google Scholar 

  22. Gilmot RR, Dardano A, Engle JS, et al. TNF-α potentiates oxidant and reperfusion-induced endothelial cell injury. J Surg Res.. 1996;61:175–182.

    Article  Google Scholar 

  23. Rojanaskul Y, Shi X, Despande D, Liang WW, Wang LY. Protection aganist oxidative injury and permeability alteration in cultured alveolar epithelium the transferrin-catalase conjugate. Biochim Biophys Acta. 1996;1315:21–28.

    Google Scholar 

  24. McGuire GM, Liu P, Jaeschke H. Neutrophil-induced lung damage after hepatic ischemia and endotoxemia. Free Radic Biol Med. 1996;20:189–197.

    Article  PubMed  CAS  Google Scholar 

  25. Wautier JL, Zoukourian C, Chappey O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products. J Clin Invest. 1996;97:238–243.

    PubMed  CAS  Google Scholar 

  26. Bruch RC, Thayer WS. Differential effect of lipid peroxidation on membrane fluidity determined by electron spin resonance probes. Biochem Biophys Acta. 1984;733:216–222.

    Google Scholar 

  27. Bellas RE, Lee JS, Sonenshein GE. Expression of a constitutive NF-kappa-β-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells. J Clin Invest. 1995;95:2521–2527.

    Google Scholar 

  28. Elliott SJ, Koliwad SK. Oxidant stress and endothelial membrane transport. Free Radic Biol Med. 1995;19:649–658.

    Article  PubMed  CAS  Google Scholar 

  29. Luc G, Fruchart JC. Oxidation of lipoproteins and atherosclerosis. Am J Clin Nutr. 1991;53:206S-209S.

    PubMed  CAS  Google Scholar 

  30. Gutteridge JMC. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41(12 Pt 2):819–1828.

    Google Scholar 

  31. Smith D, O'Leary VJ, Darley Usmar VM. The role of α-tocopherol as a peroxyl radical scavenger in human low density lipoprotein. Biochem Pharmacol. 1993;45:2195–2201.

    Article  PubMed  CAS  Google Scholar 

  32. Greindling KK, Alexander RW. Oxidative stress and cardiovascular disease. Circulation. 1997;96:3264–3265.

    Google Scholar 

  33. Ytrehus K, Hegstad AC. Lipid peroxidation and membrane damage of the heart. Acta Physiol Scand Suppl. 1991;599:81–91.

    PubMed  CAS  Google Scholar 

  34. Rangaswamy S, Penn MS, Saidel GM, Chisolm GM. Exogenous oxidized LDL injuries alters the barrier function of endothelium in Rats in vivo. Circ Res.. 1997;80:37–44.

    PubMed  CAS  Google Scholar 

  35. Zeiher AM, Fisslthaler B, Schray-Utz B, Brusse R. Nitric Oxide modulates the expression of monocyte chemo attractant protein 1 in cultured human enothelial cells. Circ Res. 1995;76:980–986.

    PubMed  CAS  Google Scholar 

  36. Post JA, Lamers JMJ, Verdoque PD, ten Cate FJ, van der Giessen WJ, Verklejj AJ. Sarcolemmal destabilization and destruction after ischemia and reperfusion and its relation with long-term recovery of regional ventricular function in pigs. Eur Heart J. 1987;8:423–430.

    PubMed  CAS  Google Scholar 

  37. Ferrari R, Ceconi C, Curello S, Cargnoni A, Medici D. Oxygen free radicals and reperfusion injury; the effect of ischemia and reperfusion on the cellular ability to neutralize oxygen toxicity. J Mol Cell Cardiol. 1986;18(Suppl):4:67–69.

    Article  PubMed  CAS  Google Scholar 

  38. Duthie GG, Morrice PC, Ventresca PG, MCLay JS. Effects of storage, iron and time of the day on indices of lipid peroxidation in plasma from healthy volunteers. Clin Chim Acta. 1992;206:207–212.

    Article  PubMed  CAS  Google Scholar 

  39. Cotter MA, Love A, Watt MJ, Cameron NE, Dines KC. Effects of natural free radical scavengers of peripheral nerves and neurovascular function in diabetic rats. Diabetologia. 1995;38:1285–1294.

    PubMed  CAS  Google Scholar 

  40. Im HK, TM WB, Tsuzuki K. Selective block of transient calcium channel current in mouse neuroblastoma cells by U-88779E. J Pharmacol Exp Ther. 1993;265:529–535.

    PubMed  CAS  Google Scholar 

  41. Steinbrecher UP. Dietary antioxidants and cardioprotection—Fact or fallacy? Can J Physiol Pharmacol. 1997;75:228–233.

    Article  PubMed  CAS  Google Scholar 

  42. Pandya DP. Nutrition and coronary heart disease. Compr Ther. 1998;24:198–202.

    PubMed  CAS  Google Scholar 

  43. Opie LH. Cardiac metabolism-emergence, decline, and resurgence. Part II. Cardiovasc Res. 1992;26:817–830.

    PubMed  CAS  Google Scholar 

  44. Steenbergen C, Murphy E, Levy L, London RE. Elevation of cytosolic free calcium concentrations early in, and endothelial cell damage after percutaneous myocardial ischemia in perfused rat heart. Circ Res. 1987;60:700–707.

    PubMed  CAS  Google Scholar 

  45. Blann A, Midgley H, Buvrows G, et al. Free radicals, antioxidants transluminal coronary angioplasty. Coronary Artery Dis. 1993;4:905–910.

    Article  CAS  Google Scholar 

  46. Bilenko MV, Morgunov AA, Churakova TD, Bulgakov VG, Komarov PG. [Disordes of cardiac contractile function in ischemic shock: the protective effect of anti-oxidants and liposomes made from egg phospholipds] (russian). Biull Eksp Biol Med. 1989;108:660–663.

    Article  PubMed  CAS  Google Scholar 

  47. Konovalova GG, Cherpachenko NM, Lankin VZ, Kogan Akh, Kurdin AN. [Limited area of coronary occlusion: myocardial infarct in rats undergoing anti-oxidant therapy.] (Russian). Biull Eksp Biol Med. 1984;98:153–156.

    PubMed  CAS  Google Scholar 

  48. Blaustein AS, Schine L, Brooks WW, Fanburg BL, Bing OHL. Influence of exogenously generated oxidant species on myocardial function. Am J Physiol. 1986;250:H595-H599

    PubMed  CAS  Google Scholar 

  49. Kloner RA, Przklenk K, Whittaker P. Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation. 1989;80:1115–1127.

    PubMed  CAS  Google Scholar 

  50. Simpson PJ, Lucchesi BR. Free radicals and myocardial ischemia and reperfusion injury. J Lab Clin Med. 1987;110: 13–30.

    PubMed  CAS  Google Scholar 

  51. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312:159–163.

    Article  PubMed  CAS  Google Scholar 

  52. Van Jaarsveld H, Groenewald AJ, Potgieter GM, Barnard SP, Vermaak WJ, Bernard HC. Effect of normothermic ischemia cardiac arrest and reperfusion on the free radical scavenger enzymes and xanthine oxidase (a generation of super oxided anions). Enzyme. 1988;39:8–16.

    PubMed  Google Scholar 

  53. Robison TW, Kim KJ. Enhancement of airway epithelial Na+−K+ ATPase activity by NO2 and protective role in nordihydroguiaretic acid. Am J Physiol. 1996;270:L266-L272.

    PubMed  CAS  Google Scholar 

  54. Sabri A, Byron KL, Samarel AM, Bell J, Lucchesi PA. Hydrogen peroxide activates mitogen-activated protein kinases and Na+−H+ exchange in neonatal rat myocardium myocytes. Circ Res. 1998;82:1053–1062.

    PubMed  CAS  Google Scholar 

  55. Sanchez Ramus JR, Overvik E, Ames BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2′ deoxyguanosine) is increased in nigro-striatum of Parkinson's disease in brain. Neurodegeneration. 1994;3:197–204.

    Google Scholar 

  56. Southorn PA, Powis G. Free Radicals in medicine. II. Involvement in human disease. Mayo Clin Proc. 1988;63:390–408.

    PubMed  CAS  Google Scholar 

  57. Liedtke AJ, Mahar CQ, Ytrehus K, Mjos OD. Estimates of free-radical production in rat and swine hearts: methods and application of measuring malondialdehyde levels in fresh and frozen myocardium. Basic Res Cardiol. 1984;79:513–518.

    Article  PubMed  CAS  Google Scholar 

  58. Lynch SM, Morrow JD, Roberts LJ II, Frei B. Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostances) in plasma and low density lipoprotein exposed to oxidative stress in vitro. J Clin Invest. 1994;93:998–1004.

    PubMed  CAS  Google Scholar 

  59. Arduini A, Mezzetti A, Porreca E, et al. Effect of ischemia and reperfusion on anti-oxidant enzymes and mitochondrial inner membrane proteins in perfused rat heart. Biochim Biophys Acta. 1988;970:113–121.

    Article  PubMed  CAS  Google Scholar 

  60. Ooiwa H, Janero DR, Stanley AW, Downey JM. Examination of two small-molecule antiperoxidative agents in a rabbit model of postischemic myocardial infarction. J Cardiovasc Pharmacol. 1991;17:761–767.

    Article  PubMed  CAS  Google Scholar 

  61. Meerson FZ, Kagan VE, Kozlov IP, Belkina LM, Arkhipenko IV. [Role of lipid peroxidation in the pathogenesis of ischemic injury and the anti-oxidant protection of the heart.] (Russian). Kardiologiia. 1982;22:81–93.

    PubMed  CAS  Google Scholar 

  62. Wesson DE, Elliott SJ. The H2O2 generating enzyme, xanthine oxidase decreases luminal Ca+2 content of the IP3-sensitive Ca+2 store in vascular endothelial cells. Microcirculation. 1995;2:195–203.

    Article  PubMed  CAS  Google Scholar 

  63. Wu X, Wang M. Dietary nicotinemide supplementation increases xanthine oxidoreductase activity in the kidney and heart but not liver of obese Zucker rats. J Nutr. 1995;125:1841–1846.

    PubMed  CAS  Google Scholar 

  64. Kooij A, Bosch KS, Frederiks WM, Van Noorden CJF. High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective tissue cells.: A relation between localization and function? Virchows Arch B Cell Pathol Incl Mohr Pathol. 1992;62:143–150.

    CAS  Google Scholar 

  65. Andreoli SP, Mallett C, McAtter JA, Williams LV. Antioxidant defense mechanisms of endothelial cells and renal tubular epithelial cells in vitro: role of glutathione redox cycle and catalase. Pediatr Res. 1992;32:36–365.

    Article  Google Scholar 

  66. Metinko AP, Kunkel SL, Standiford TJ, Strieter RM. Anoxia-hyperoxia induces monocyte-derived interlukin-8. J Clin Invest. 1992;90:791–798.

    PubMed  CAS  Google Scholar 

  67. Doroshow JH. Glutathione peroxidase and oxidative stress. Toxicol Lett. 1995;82:395–398.

    Article  PubMed  Google Scholar 

  68. Kinnula VL, Everitt JI, Mangum, JB, Chang LY, Crapo JD. Antioxidant defense mechanisms in cultured pleural mesothelial cells. Am J Respir Cell Mol Biol. 1992;7:95–103.

    PubMed  CAS  Google Scholar 

  69. Jaeschke H. Enhanced sinusoidal glutathione efflux during endotoxin-induced oxidant stress in vivo. Am J Physiol. 1992;263:G60-G68.

    PubMed  CAS  Google Scholar 

  70. Lapenna D, Gioia SD, Ciofani G, et al. Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation. 1998;97:1930–1934.

    PubMed  CAS  Google Scholar 

  71. Deleve LD, Kaplowitz N. Glutathione metabolism and its role in hepatotoxity. Pharmacol Ther. 1991;52:287–305.

    Article  PubMed  CAS  Google Scholar 

  72. Valenza M, Serbinova E, Packer L, Khwaja S, Catudioc J. Nitecapone protects the Langendorff perfused heart against ischema-reperfusion injury. Biochem Mol Biol Int. 1993;29:443–449

    PubMed  CAS  Google Scholar 

  73. Mehra MR, Lavie CJ, Ventura HO, Milani RV. Prevention of atherosclerosis. The potential role of antioxidants. Postgrad Med. 1995;98:175–6, 176–84.

    PubMed  CAS  Google Scholar 

  74. Morita K, Ihnken K, Buckberg GD, Matheis G, Sherman MP, Young HH. Studies of hypoxemic/reoxygenation injury: Without aortic clamp. VIII. Counteraction of oxidant damage by exogenous glutamate and aspartate. J Thorac Cardiovasc Surg. 1995;110:1228–1234.

    Article  PubMed  CAS  Google Scholar 

  75. Raij L, Nagy J, Coffee K, Demaster EG. Hypercholesterolemia promotes endothelial dysfunction in vitamin E-and selenium-deficient rats. Hypertension. 1993;22:56–61.

    PubMed  CAS  Google Scholar 

  76. Tan CM, Xenoyannis S, Feldman RD. Oxidant stress enhances adenylyl cyclase activation. Circ Res. 1995;77:710–717.

    PubMed  CAS  Google Scholar 

  77. Tardif JC, Cote G, Lesperance J, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med. 1997;337:365–372.

    Article  PubMed  CAS  Google Scholar 

  78. Popovici D, Olinescu R, Hertoghe J. The negative impact of oxidative stress in chronic cardiac failure and coronary heart disease calls a new pathophysiologic and therapeutic approach. Rom J Endocrinol. 1992;30:87–101.

    PubMed  CAS  Google Scholar 

  79. Voronkov GS, Tsiomik VA, Dubur GI. [Relation between the impairment of creatinine kinase activity and lipid peroxidation in the membranes of heart mitochondria, and sarcoplasmic reticulum in experimental ischemia.], (Russian) Ukrain Biokhimich Z. 1986;58:72–76.

    CAS  Google Scholar 

  80. Schilling WP, Elliott SJ. Calcium signaling mechanisms of vascular endothelial cells and their role in oxidant induced endothelial cell dysfunction. Am J Physiol. 1992;262:H1617-H1630.

    PubMed  CAS  Google Scholar 

  81. Garcia-Ruiz C, Colell A, Morales A, Kaplowitz N, Fernandez Checa JC. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa β: studies with isolated mitochondria, and rat hepatocytes. Mol Pharmacol. 1995;48:825–834.

    PubMed  CAS  Google Scholar 

  82. Yanagida S, Luo CS, Doyle M, Pohost GM, Pike MM. Nuclear magnetic resonance studies of cationic and energetic alterations with oxidant stress in the perfused heart. Modulation with pyruvate and lactate. Circ Res. 1995;77:773–783.

    PubMed  CAS  Google Scholar 

  83. Haddock PS, Shattock MJ, Hearse DJ. Modulation of cardiac Na+−K+ pump current: role of protein and nonprotein sulfhydryl redox status. Am J Physiol. 1995;269:H297-H307.

    PubMed  CAS  Google Scholar 

  84. Koliward SK, Kunze DL, Elliott SJ. Oxidant stress activate a non-selective cation channel responsible for membrane depolarization in calf vascular endothelial cells. J Physiol. 1996;491:1–12.

    Google Scholar 

  85. Elliott SJ, Schilling WP. Oxidant stress alters Na+, pump and Na+−K+−Cl cotransporter activities in vascular endothelial cells. Am J Physiol. 1992;263:H96-H102.

    PubMed  CAS  Google Scholar 

  86. Tuev AV, Ibragimova EI, Solov'ev OV. [The sick sinus syndrome and lipid peroxidation. Its possible role in pathogenesis of the disease.] (Russian) Terapevtich Arkhiv. 1991;63:77–82.

    CAS  Google Scholar 

  87. Olesin AI, Maksimov VA, Pzhara IP, Pavlova RN, Sorokina VS, Lobanov NA. [Patogenetic characteristic of the development of arrhythmia in patients with ischemic heart disease.] (Russian) Klin Med. 1991;69:54–58.

    CAS  Google Scholar 

  88. Olesin AI, Pavlova RN, Lobanov NA. [The clinical evaluation of a change in lipid peroxidation in patients with ischemic heart disease and cardiac arrhythmias.] (Russian) Teraperticheskii Arkhiv. 1991;63(4):82–86

    CAS  Google Scholar 

  89. Koniurev EA. [Action of dibunol, isoptin, and their combination in transitory myocardial ischemia in waking habits.] (Russian) Farmakol Toksikol. 1987;50:61–64.

    PubMed  CAS  Google Scholar 

  90. Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey JL, Zarling EJ. Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radic Biol Med. 1993;14:643–647.

    Article  PubMed  CAS  Google Scholar 

  91. Walther FJ, David Cu R, Lopez SL. Antioxidant-surfactant liposomes mitigate hyperoxic injury in premature rabbits. Am J Physiol. 1995;269:L613-L617.

    PubMed  CAS  Google Scholar 

  92. Jang EH, Prak IW, Choi BW, Hue SH, Song KY, Lee HS. [Protective effects against paraquat toxicity by intraperitoneal administration of liposomal SOD and catalase.] (Korean). Chung-Ang J Med. 1992;17:273–285.

    CAS  Google Scholar 

  93. Schulz R, Heusch G. Characterization of hibernating and stunned myocardium. Eur Heart J. 1995;16(Suppl. J):19–25.

    PubMed  Google Scholar 

  94. Pognized SM, Corr PB. Mechanisms of arrhythmogenesis during myocardial ischemia and reperfusion: A perspective of our current understanding. J Mol Cell Cardiol. 1986;18(Suppl. 4):43–48.

    Google Scholar 

  95. Kugiyama K, Ohgushi M, Motoyama T, et al. Intracoronary infusion of reduced glutathione improves endothelial vasomotor responses to the acetylcholine in human coronary circulation. Circulation. 1998;97:2299–2301.

    PubMed  CAS  Google Scholar 

  96. Tardif JC, Cote G, Lesperance J, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med. 1997;337:365–372.

    Article  PubMed  CAS  Google Scholar 

  97. Gokce N, Frei B. Basic Research in antioxidant inhibition of steps in atherogenesis. J Cardiovasc Risk. 1996;3:352–357

    Article  PubMed  CAS  Google Scholar 

  98. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunology Today. 1994;15:7–10.

    Article  PubMed  CAS  Google Scholar 

  99. Hockenberry DM, Oltvai ZN, Vin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75:241–251.

    Article  Google Scholar 

  100. Prehn JHM, Bindokas VP, Jordan J, et al. Protective effect of transforming growth factor β-1 on β-amylod neurotoxicity in rat hippocampal neurons. Mol Pharmacol. 1996;49:319–328.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Pandya, D.P. Oxidant injury in coronary heart disease [Part-1]. Compr Ther 27, 284–292 (2001). https://doi.org/10.1007/s12019-001-0026-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12019-001-0026-0

Keywords

Navigation