Skip to main content
Log in

Theoretical basis for the scleral expansion band procedure for surgical reversal of presbyopia [SRP]

  • Original Article
  • Published:
Comprehensive Therapy

Abstract

A new technique, the scleral expansion band procedure, has been developed for the surgical reversal of presbyopia. An understanding of demonstrable clinical effects of the scleral expansion band procedure, based on Schachar's theory, requires a revision of historically held views concerning the mechanism of accommodation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Helmholtz H. Ueber die Akommodation des Auges. Graefes Arch Clin Exp Ophthalmol. 1855;1:1–89.

    Google Scholar 

  2. Young T. On the mechanism of the eye, Philos Trans R Soc Lond. 1801;92:23–88.

    Google Scholar 

  3. Tscherning M. Physiological Optics. Philadelphia, Pa: Keystone; 1904:160–189.

    Google Scholar 

  4. Ivanoff A. On the influence of accommodation on spherical aberration in the human eye: an attempt to interpret night myopia. J Opt Soc Am. 1947;37:730–731.

    Google Scholar 

  5. Koomen M, Tousey R, Scolnik R. The spherical aberration of the eye. J Opt Soc Am 1949;39:370–376.

    Article  PubMed  CAS  Google Scholar 

  6. Schachar RA, Anderson DA. The mechanism of ciliary muscle function. Ann Ophthalmol 1995;27:126–132.

    Google Scholar 

  7. van Alphen GWHM, Robinette BS, Marci FJ. Drug effects on ciliary muscle and choroid preparations in vitro. Arch Ophthalmol. 1962;68:111–123.

    Google Scholar 

  8. Gordon AR, Siegman M. Mechanical properties of smooth muscle: I. Length-tension and force velocity relations. Am J Physiol. 1971;15:1243–1249.

    Google Scholar 

  9. Rafferty NS. Structure, function, and pathology. In: Maisel H, ed. The Ocular Lens, New York, NY: Marcel Dekker Inc; 1985:2–5.

    Google Scholar 

  10. Sakabe I, Oshika T, Lim SJ, Apple DJ. Anterior shift of zonular insertion onto the anterior surface of human crystalline lens with age. Ophthalmology. 1008;105:295–299.

    Article  Google Scholar 

  11. Lim SJ, Shin JK, Kim HB, Kurata Y, Sakabe I, Apple DJ. Analysis of zonular-free zone and lens size in relation to axial length of eye with age. J Cataract Refract Surg. 1998;24:390–396.

    PubMed  CAS  Google Scholar 

  12. Coulombe JL, Coulombe AJ. Lens development: IV. Size, shape and orientation. Invest Ophthalmol Vis Sci. 1969;8:251–257.

    Google Scholar 

  13. Marshall J, Bauconsfield M, Rothery S. The anatomy and development of the human lens and zonules. Trans Ophthalmol Soc UK. 1982;102:423–440.

    PubMed  Google Scholar 

  14. Kleinman NJ, Worgul BV. Lens. In: Tasman W, ed. Duane's Foundations of Clinical Ophthalmology. Vol. 1. Philadelphia, Pa: JB Lippincott; 1994: chap 15.

    Google Scholar 

  15. Duke-Elder, S, Waybar, KC. Anatomy of the visual system. In: Duke-Elder S, ed. System of Ophthalmology. Vol. 2. London, England: Henry Kimpton; 1962:80–81.

    Google Scholar 

  16. Donders FC. Accommodation and Refraction of the Eye. London. England: New Sydenham Society; 1864:204–215.

    Google Scholar 

  17. Schachar RA. Treatment of presbyopia and other eye disorders. US patent 5,354,331. October 11, 1994; US patent 5,465,737. November 14, 1995; US patent 5,489,299. February 6, 1996; US patent 5,503,165. April 2, 1996; US patent 5,529,076. June 25, 1996; and US patent 5,722,952. March 3,1998. European and other intenational patents pending.

  18. Fukasaku H. Silicone expansion plug implant surgery for presbyopia. Paper presented at the American Society of Cataract and Refractive Surgery Symposium; May 21, 2000; Boston, Mass.

  19. Schachar RA. Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann Ophthalmol. 1992;24:445–452.

    PubMed  CAS  Google Scholar 

  20. Schachar RA. Scleral prosthesis for treatment of presbyopia and other eye disorders. US patent 6,007,578. December 28, 1999. European and other international patents pending.

  21. Fincham EF. Mechanism of accommodation. Br J Ophthalmol. 1937;8 (suppl):5–80.

    Google Scholar 

  22. Neider MW, Crawford K, Kaufman PL, Bito LZ. In vivo videography of the rhesus monkey accommodative apparatus: age-related loss of ciliary muscle response to central stimulation. Arch Opthalmol. 1990;108:69–74.

    CAS  Google Scholar 

  23. Glasser A, Kaufman PL. The mechanism of accommodation in primates. Ophthalmology. 1999;106:863–872.

    Article  PubMed  CAS  Google Scholar 

  24. Levy NS. Letter to the editor. Ophthalmology. 2000;107:625.

    Article  PubMed  CAS  Google Scholar 

  25. Glasser A, Kaufman PL. Letter to the editor. Ophthalmology. 2000;107:626.

    Article  Google Scholar 

  26. Wilson RS. Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infrared retro-illumination video photography and pixel unit measurements. Trans Am Ophthalmol Soc. 1997;95:261–270.

    PubMed  CAS  Google Scholar 

  27. Enoch JM, Hope GM. An analysis of retinal orientation: IV. Center of the entrance pupil and the center of convergence of orientation and directional sensitivity. Invest Ophthalmol Vis Sci. 1972;11:1017–1021.

    CAS  Google Scholar 

  28. Strenk SA, Semmlow JL, Strenk LM, et al. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci. 1999;40:1162–1169.

    PubMed  CAS  Google Scholar 

  29. Levy NS. Comparing MRIs with movement artifact [electronic letter to the editor]. Invest Ophthalmol Vis Sci. February 2, 2000. Available at: http://www.iovs.org/cgi/eletters/40/6/1162#EL3.

  30. Schachar RA, Huang T, Huang X. Mathematic proof of Schachar's hypothesis of accmmodation. Ann Ophthalmol. 1993;25:5–9.

    PubMed  CAS  Google Scholar 

  31. Streeten BW. Zonular apparatus. In: Jakobiec FA, ed. Ocular Anatomy Embryology and Teratology. Philadelphia, Pa: Harper & Row Publishers Inc; 1982:331–353.

    Google Scholar 

  32. Brown N. Shape of lens equator. Exp Eye Res. 1974;19:571–576.

    Article  PubMed  CAS  Google Scholar 

  33. Schachar RA, Cudmore DP. Effect of gravity on amplitude of accommodation. Ann Ophthalmol. 1994;26:65–70.

    PubMed  CAS  Google Scholar 

  34. Vanderploeg JM. Near visual acuity measurements of space shuttle crew members. Aviat Space Environ Med. 1985;57:492.

    Google Scholar 

  35. Schachar RA. Zonular function: a new hypothesis with clinical implications. Ann Ophthalmol. 1994;26:36–38.

    PubMed  CAS  Google Scholar 

  36. Schachar RA. Histology of the ciliary muscle-zonular connections. Ann Ophthalmol. 1996;28:70–79.

    Article  Google Scholar 

  37. Farnsworth PN, Shyne SE. Anterior zonular shifts with age. Exp Eye Res. 1979;28:291–297.

    Article  PubMed  CAS  Google Scholar 

  38. Schachar RA, Tello C, Cudmore DP, et al. In vivo increase of the human lens equatorial diameter during accommodation. Am J Physiol. 1996;271:R670-R676.

    PubMed  CAS  Google Scholar 

  39. Schachar RA. Is Helmholtz's theory of accommodation corrects? Ann Ophthalmol. 1999;31:10–17.

    Google Scholar 

  40. Schachar RA, Cudmore DP, Black TD. A revolutionary variable focus lens. Ann Ophthalmol. 1996;28:11–18.

    Google Scholar 

  41. Schachar RA, Cudmore DP, Black TD, et al. Paradoxical optical power increase of a deformable lens by equatorial stretching. Ann Ophthalmol. 1998;30:10–18.

    Google Scholar 

  42. Schachar RA. The scleral expansion band procedure for the treatment of ocular hypertension and primary open angle glaucoma. Ann Ophthalmol. 2000;32:87–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Schachar MD, PhD.

Additional information

This article was published in the Winter 2000 issue of Annals of Ophthalmology

About this article

Cite this article

Schachar, R.A. Theoretical basis for the scleral expansion band procedure for surgical reversal of presbyopia [SRP]. Compr Ther 27, 39–46 (2001). https://doi.org/10.1007/s12019-001-0006-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12019-001-0006-4

Keywords

Navigation